INTERMOLECULAR INTERACTION ENERGIES AND HIRSCHFELD SURFACE ANALYSIS OF ORGANIC SALT CRYSTAL FORMING NITRATE ION WITH NORFLOXACIN
Rasulov A.A.
Junior researcher of Institute of Bioorganic Chemistry AS of Uzbekistan
Ashurov J.M.
Doctor of Chemical Science, Leading researcher of Institute of Bioorganic Chemistry AS of Uzbekistan
Alimnazarov B.Kh
Doctor of philosophy of chemical sciences, senior lecturer of Termiz State University
Suyunov J.R.
Doctor of philosophy of chemical sciences, senior lecturer of Termiz State University
##semicolon## Norfloxacin, organic salt, nitrate anion, Hirshfeld, energy
सार
In this article, the composition of a new organic salt complex of HL+NO3 - composition formed by the nitric acid anion of norfloxacin (HL), molecular and crystal structures, studied using X-ray structure analysis (RTT), was found to have a molecular mass of 383.31 g/mol, a monoclinic, spatial form of singonia P21/N. Based on the data obtained in the RTT analysis of the synthesized organic salt, the Hirschfeld surface analysis of the comlex was carried out, as well as the energies of intermolecular interaction were calculated. According to the results of the Hirshfeld surface analysis, it was found that the main part of the effects is made up of H...O/O...H (45.6%), H...H (28.2%) bonds.
##submission.citations##
Reddy, J. S., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, K. A., Kumar, K. A. (2011). Fluoroquinolone salts with carboxylic acids. Journal of Pharmaceutical Sciences, 100(8), 3160–3176. https://doi.org/10.1002/jps.22537
Puigjaner, C., Barbas, R., Portell, A., Font-Bardia, M., Alcobé, X., & Prohens, R. (2010). Revisiting the Solid State of Norfloxacin. Crystal Growth & Design, 10(7), 2948–2953. https://doi.org/10.1021/cg9014898
Huang, X.-F., Zhang, Z.-H., Zhang, Q.-Q., Wang, L.-Z., He, M.-Y., Chen, Q., Du, M. (2013). Norfloxacin salts with benzenedicarboxylic acids: charge-assisted hydrogen-bonding recognition and solubility regulation. CrystEngComm, 15(30), 6090. https://doi.org/10.1039/c3ce40567b
Surov, A. O., Voronin, A. P., Drozd, K. V., Churakov, A. V., Roussel, P., & Perlovich, G. L. (2018). Diversity of crystal structures and physicochemical properties of ciprofloxacin and norfloxacin salts with fumaric acid. CrystEngComm, 20(6), 755–767. https://doi.org/10.1039/C7CE02033C
Holstein, J. J., Hübschle, C. B., & Dittrich, B. (2012). Electrostatic properties of nine fluoroquinoloneantibiotics derived directly from their crystal structure refinements. CrystEngComm, 14(7), 2520–2531. https://doi.org/10.1039/c1ce05966a
Basavoju, S., Boström, D., & Velaga, S. P. (2012). Pharmaceutical Salts of Fluoroquinolone Antibacterial Drugs with Acesulfame Sweetener. Molecular Crystals and Liquid Crystals, 562(1), 254–264. https://doi.org/10.1080/10426507.2012.669673
Pinto Vitorino, G., Sperandeo, N. R., Caira, M. R., & Mazzieri, M. R. (2013). A Supramolecular Assembly Formed by Heteroassociation of Ciprofloxacin and Norfloxacin in the Solid State: Co-Crystal Synthesis and Characterization. Crystal Growth & Design, 13(3), 1050–1058. https://doi.org/10.1021/cg301299e
Osorio Ferreira, P., Cosmo de Almeida, A., Carvalho dos Santos, É., Droppa, R., Ferreira, F. F., Kogawa, A. C., & Caires, F. (2020). A norfloxacin-nicotinic acid cocrystal: mechanochemical synthesis, thermal and structural characterization and solubility assays. Thermochimica Acta, 178782. https://doi.org/10.1016/j.tca.2020.178782
A. Gavezotti. Acc. Chem. Res. 1994.Vol. 27. №10. P.309–314
C. F. Macrae, I. J. Bruno, et al. Appl.Cryst. 2008.41.466-470
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. 2017, Turner Crystal Explorer17. University of Western Australia. http://Hirshfeldsurface.net.