Published June 8, 2024 | Version v1
Journal article Open

INTERMOLECULAR INTERACTION ENERGIES AND HIRSCHFELD SURFACE ANALYSIS OF ORGANIC SALT CRYSTAL FORMING NITRATE ION WITH NORFLOXACIN

  • 1. Junior researcher of Institute of Bioorganic Chemistry AS of Uzbekistan
  • 2. Doctor of Chemical Science, Leading researcher of Institute of Bioorganic Chemistry AS of Uzbekistan
  • 3. Doctor of philosophy of chemical sciences, senior lecturer of Termiz State University

Description

In this article, the composition of a new organic salt complex of HL+NO3 - composition formed by the nitric acid anion of norfloxacin (HL), molecular and crystal structures, studied using X-ray structure analysis (RTT), was found to have a molecular mass of 383.31 g/mol, a monoclinic, spatial form of singonia P21/N. Based on the data obtained in the RTT analysis of the synthesized organic salt, the Hirschfeld surface analysis of the comlex was carried out, as well as the energies of intermolecular interaction were calculated. According to the results of the Hirshfeld surface analysis, it was found that the main part of the effects is made up of H...O/O...H (45.6%), H...H (28.2%) bonds.

Files

97-103 Rasulov A. new MJST.pdf

Files (1.7 MB)

Name Size Download all
md5:c1f274b05f6ba34eea308fcf3cb7e754
1.7 MB Preview Download

Additional details

References

  • 1. Reddy, J. S., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, K. A., Kumar, K. A. (2011). Fluoroquinolone salts with carboxylic acids. Journal of Pharmaceutical Sciences, 100(8), 3160–3176. https://doi.org/10.1002/jps.22537
  • 2. Puigjaner, C., Barbas, R., Portell, A., Font-Bardia, M., Alcobé, X., & Prohens, R. (2010). Revisiting the Solid State of Norfloxacin. Crystal Growth & Design, 10(7), 2948–2953. https://doi.org/10.1021/cg9014898
  • 3. Huang, X.-F., Zhang, Z.-H., Zhang, Q.-Q., Wang, L.-Z., He, M.-Y., Chen, Q., Du, M. (2013). Norfloxacin salts with benzenedicarboxylic acids: charge-assisted hydrogen-bonding recognition and solubility regulation. CrystEngComm, 15(30), 6090. https://doi.org/10.1039/c3ce40567b
  • 4. Surov, A. O., Voronin, A. P., Drozd, K. V., Churakov, A. V., Roussel, P., & Perlovich, G. L. (2018). Diversity of crystal structures and physicochemical properties of ciprofloxacin and norfloxacin salts with fumaric acid. CrystEngComm, 20(6), 755–767. https://doi.org/10.1039/C7CE02033C
  • 5. Holstein, J. J., Hübschle, C. B., & Dittrich, B. (2012). Electrostatic properties of nine fluoroquinoloneantibiotics derived directly from their crystal structure refinements. CrystEngComm, 14(7), 2520–2531. https://doi.org/10.1039/c1ce05966a
  • 6. Basavoju, S., Boström, D., & Velaga, S. P. (2012). Pharmaceutical Salts of Fluoroquinolone Antibacterial Drugs with Acesulfame Sweetener. Molecular Crystals and Liquid Crystals, 562(1), 254–264. https://doi.org/10.1080/10426507.2012.669673
  • 7. Pinto Vitorino, G., Sperandeo, N. R., Caira, M. R., & Mazzieri, M. R. (2013). A Supramolecular Assembly Formed by Heteroassociation of Ciprofloxacin and Norfloxacin in the Solid State: Co-Crystal Synthesis and Characterization. Crystal Growth & Design, 13(3), 1050–1058. https://doi.org/10.1021/cg301299e
  • 8. Osorio Ferreira, P., Cosmo de Almeida, A., Carvalho dos Santos, É., Droppa, R., Ferreira, F. F., Kogawa, A. C., & Caires, F. (2020). A norfloxacin-nicotinic acid cocrystal: mechanochemical synthesis, thermal and structural characterization and solubility assays. Thermochimica Acta, 178782. https://doi.org/10.1016/j.tca.2020.178782
  • 9. A. Gavezotti. Acc. Chem. Res. 1994.Vol. 27. №10. P.309–314
  • 10. C. F. Macrae, I. J. Bruno, et al. Appl.Cryst. 2008.41.466-470