COMPARATIVE ANALYSIS OF METHODS FOR PREDICTING THE TRAJECTORY OF OBJECT MOVEMENT IN A COLLABORATIVE ROBOT-MANIPULATOR WORKING AREA

Svitlana Maksymova

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Amer Abu-Jassar

Department of Computer Science, College of Computer Sciences and Informatics, Amman Arab University, Amman, Jordan

Dmytro Gurin

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Vladyslav Yevsieiev

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

##semicolon## Industry 5.0, Collaborative Robot, Work Area, Computer Vision, Trajectory Prediction.


सार

This article presents a comparative analysis of methods for predicting object

movement trajectories in a collaborative robots-manipulator working area. The following

approaches are evaluated: linear method, Kalman filter, extended Kalman filter (EKF), behavioral

models and LSTM models. A mathematical description of each method is accompanied by an

analysis of their advantages and disadvantages, including prediction accuracy, implementation

complexity, and resource requirements. The results show that the choice of the method depends

on the specifics of the task and the robot's operating conditions, which allows for an optimal

combination of efficiency and computational costs.


##submission.citations##

Gurin, D., & et al. (2024). Using Convolutional Neural Networks to Analyze and Detect Key Points of Objects in Image. Multidisciplinary Journal of Science and Technology, 4(9), 5-15.

2. Yevsieiev, V., & et al. (2024). The Canny Algorithm Implementation for Obtaining the Object Contour in a Mobile Robot’s Workspace in Real Time. Journal of Universal Science Research, 2(3), 7–19.

3. Bortnikova, V., & et al. (2019). Structural parameters influence on a soft robotic

manipulator finger bend angle simulation. In 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), IEEE, 35-38.

4. Gurin, D., & et al. (2024). Using the Kalman Filter to Represent Probabilistic Models for Determining the Location of a Person in Collaborative Robot Working Area. Multidisciplinary Journal of Science and Technology, 4(8), 66-75.

5. Samoilenko, H., & et al. (2024). Review for Collective Problem-Solving by a Group of Robots. Journal of Universal Science Research, 2(6), 7-16.

6. Attar, H., Abu-Jassar, A. T., Yevsieiev, V., Lyashenko, V., Nevliudov, I., & Luhach, A. K. (2022). Zoomorphic Mobile Robot Development for Vertical Movement Based on the Geometrical Family Caterpillar. Computational intelligence and neuroscience, 2022, 3046116.

7. Baker, J. H., Laariedh, F., Ahmad, M. A., Lyashenko, V., Sotnik, S., & Mustafa, S. K. (2021). Some interesting features of semantic model in Robotic Science. SSRG International Journal of Engineering Trends and Technology, 69(7), 38-44.

8. Nevliudov, I., Yevsieiev, V., Lyashenko, V., & Ahmad, M. A. (2021). GUI Elements and Windows Form Formalization Parameters and Events Method to Automate the

Process of Additive Cyber-Design CPPS Development. Advances in Dynamical Systems and Applications, 16(2), 441-455.

9. Lyashenko, V., Abu-Jassar, A. T., Yevsieiev, V., & Maksymova, S. (2023). Automated Monitoring and Visualization System in Production. International Research Journal of Multidisciplinary Technovation, 5(6), 9-18.

10. Abu-Jassar, A. T., Attar, H., Lyashenko, V., Amer, A., Sotnik, S., & Solyman, A. (2023). Access control to robotic systems based on biometric: the generalized model and its practical implementation. International Journal of Intelligent Engineering and Systems, 16(5),

313-328.

11. Al-Sharo, Y. M., Abu-Jassar, A. T., Sotnik, S., & Lyashenko, V. (2023). Generalized Procedure for Determining the Collision-Free Trajectory for a Robotic Arm. Tikrit Journal of Engineering Sciences, 30(2), 142-151.

12. Ahmad, M. A., Sinelnikova, T., Lyashenko, V., & Mustafa, S. K. (2020). Features of the construction and control of the navigation system of a mobile robot. International Journal of Emerging Trends in Engineering Research, 8(4), 1445-1449.

13. Yevsieiev, V., & et al. (2024). Object Recognition and Tracking Method in the Mobile Robot’s Workspace in Real Time. Technical science research in Uzbekistan, 2(2), 115-124.

14. Bortnikova, V., & et al. (2019). Mathematical model of equivalent stress value

dependence from displacement of RF MEMS membrane. In 2019 IEEE XVth International

Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH),

IEEE, 83-86.

15. Funkendorf, A., & et al. (2019). 79 Mathematical Model of Adapted Ultrasonic

Bonding Process for MEMS Packaging. In 2019 IEEE XVth International Conference on the

Perspective Technologies and Methods in MEMS Design (MEMSTECH), IEEE, 79-82.

16. Gurin, D., & et al. (2024). Effect of Frame Processing Frequency on Object

Identification Using MobileNetV2 Neural Network for a Mobile Robot. Multidisciplinary Journal

of Science and Technology, 4(8), 36-44.

17. Abu-Jassar, A., & et al. (2023). Obstacle Avoidance Sensors: A Brief Overview.

Multidisciplinary Journal of Science and Technology, 3(5), 4-10.

18. Yevsieiev, V., & et al. (2024). Building a traffic route taking into account obstacles

based on the A-star algorithm using the python language. Technical Science Research In

Uzbekistan, 2(3), 103-112.

19. Gurin, D., & et al. (2024). MobileNetv2 Neural Network Model for Human

Recognition and Identification in the Working Area of a Collaborative Robot. Multidisciplinary

Journal of Science and Technology, 4(8), 5-12.

20. Sotnik S., & et al.. (2022). Key Directions for Development of Modern Expert

Systems. International Journal of Engineering and Information Systems (IJEAIS), 6(5), 4-10.

21. Sotnik S., & Lyashenko V. (2022). Prospects for Introduction of Robotics in

Service. International Journal of Academic Engineering Research (IJAER), 6(5), 4-9.

22. Lyashenko, V., & Sotnik, S. (2022). Overview of Innovative Walking Robots.

International Journal of Academic Engineering Research (IJAER), 6(4), 3-7.

23. Lyashenko, V., & et al.. (2021). Semantic Model Workspace Industrial Robot.

International Journal of Academic Engineering Research, 5(9), 40-48.

24. Matarneh, R., & et al.. (2019). Development of an Information Model for Industrial

Robots Actuators. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 16(1), 61-

67.

25. Lyashenko, V., Ahmad, M. A., Belova, N., & Sotnik, S. (2021). Modern Walking

Robots: A Brief Overview. International Journal of Recent Technology and Applied Science

(IJORTAS), 3(2), 32-39.

26. Sotnik, S., & et al.. (2022). Analysis of Existing Infliences in Formation of Mobile

Robots Trajectory. International Journal of Academic Information Systems Research, 6(1), 13-20.

27. Sotnik, S., & et al.. (2022). Modern Industrial Robotics Industry. International

Journal of Academic Engineering Research, 6(1), 37-46.

28. Baranova, V., Zeleniy, O., Deineko, Z., & Lyashenko, V. (2019, October).

Stochastic Frontier Analysis and Wavelet Ideology in the Study of Emergence of Threats in the

Financial Markets. In 2019 IEEE International Scientific-Practical Conference Problems of

Infocommunications, Science and Technology (PIC S&T) (pp. 341-344). IEEE.

29. Слюніна, Т. Л., Бережний, Є. Б., & Ляшенко, В. В. (2007). Розвиток

вітчизняної мережі банківських установ: особливості та регіональні аспекти. Вісник ХНУ

ім. В. Н. Каразіна. Економічна серія, 755. 84–88.

30. Ляшенко В. В. (2007). Интерпретация и анализ статистических данных,

описывающих процессы экономической динамики. Бизнес Информ, 9(2), 108-113.

31. Lyashenko, V. V., Matarneh, R., Kobylin, O., & Putyatin, Y. P. (2016). Contour

Detection and Allocation for Cytological Images Using Wavelet Analysis Methodology.

International Journal, 4(1), 85-94.

32. Al-Sharo, Y. M., Abu-Jassar, A. T., Sotnik, S., & Lyashenko, V. (2021). Neural

networks as a tool for pattern recognition of fasteners. International Journal of Engineering Trends

and Technology, 69(10), 151-160.

33. Abu-Jassar, A. T., Al-Sharo, Y. M., Lyashenko, V., & Sotnik, S. (2021). Some

Features of Classifiers Implementation for Object Recognition in Specialized Computer systems.

TEM Journal, 10(4), 1645.

34. Matarneh, R., Maksymova, S., Deineko, Z., & Lyashenko, V. (2017). Building

robot voice control training methodology using artificial neural net. International Journal of Civil

Engineering and Technology, 8(10), 523-532.

35. Sotnik, S., Matarneh, R., & Lyashenko, V. (2017). System model tooling for

injection molding. International Journal of Mechanical Engineering and Technology, 8(9), 378-

390.

36. Al-Sherrawi, M. H., Lyashenko, V., Edaan, E. M., & Sotnik, S. (2018). Corrosion

as a source of destruction in construction. International Journal of Civil Engineering and

Technology, 9(5), 306-314.

37. Lyashenko, V., Ahmad, M. A., Sotnik, S., Deineko, Z., & Khan, A. (2018). Defects

of communication pipes from plastic in modern civil engineering. International Journal of

Mechanical and Production Engineering Research and Development, 8(1), 253-262.

38. Lyashenko, V. V., Matarneh, R., Baranova, V., & Deineko, Z. V. (2016). Hurst

Exponent as a Part of Wavelet Decomposition Coefficients to Measure Long-term Memory Time

Series Based on Multiresolution Analysis. American Journal of Systems and Software, 4(2), 51-

56.

39. Abu-Jassar, A. T., Attar, H., Amer, A., Lyashenko, V., Yevsieiev, V., & Solyman,

A. (2024). Remote Monitoring System of Patient Status in Social IoT Environments Using

Amazon Web Services (AWS) Technologies and Smart Health Care. International Journal of

Crowd Science.

40. Babker, A. M., Suliman, R. S., Elshaikh, R. H., Boboyorov, S., & Lyashenko, V.

(2024). Sequence of Simple Digital Technologies for Detection of Platelets in Medical Images.

Biomedical and Pharmacology Journal, 17(1), 141-152.

41. Orobinskyi, P., Deineko, Z., & Lyashenko, V. (2020). Comparative Characteristics

of Filtration Methods in the Processing of Medical Images. American Journal of Engineering

Research, 9(4), 20-25.

42. Tahseen A. J. A., & et al.. (2023). Binarization Methods in Multimedia Systems

when Recognizing License Plates of Cars. International Journal of Academic Engineering

Research (IJAER), 7(2), 1-9.

43. Lyubchenko, V., Veretelnyk, K., Kots, P., & Lyashenko, V. (2024). Digital image

segmentation procedure as an example of an NP-problem. Multidisciplinary Journal of Science

and Technology, 4(4), 170-177.

44. Drugarin, C. V. A., Lyashenko, V. V., Mbunwe, M. J., & Ahmad, M. A. (2018).

Pre-processing of Images as a Source of Additional Information for Image of the Natural Polymer

Composites. Analele Universitatii'Eftimie Murgu', 25(2).

45. Marchetti, F., & et al. (2020). Multiple trajectory prediction of moving agents with

memory augmented networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,

45(6), 6688-6702.

46. Fang, L., & et al. (2020). Tpnet: Trajectory proposal network for motion prediction.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.

6797-6806.

47. Dendorfer, P., & et al. (2020). Goal-gan: Multimodal trajectory prediction based on

goal position estimation. In Proceedings of the Asian Conference on Computer Vision.

48. Quan, R., & et al. (2021). Holistic LSTM for pedestrian trajectory prediction. IEEE

transactions on image processing, 30, 3229-3239.

49. Xiao, C., & et al. (2024). Motiontrack: Learning motion predictor for multiple

object tracking. Neural Networks, 179, 106539.

50. Zhang, Z., & et al. (2020). Stinet: Spatio-temporal-interactive network for

pedestrian detection and trajectory prediction. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 11346-11355)