NUMERICAL STUDY OF TURBULENT SEPARATED FLOWS IN AXISYMMETRIC DIFFUSERS BASED ON A TWO-FLUID TURBULENCE MODEL
Shoev M.A
Fergana polytechnic institute, Uzbekistan
Rakhmankulov S.A
Fergana polytechnic institute, Uzbekistan
Qosimov A.Sh
Fergana polytechnic institute, Uzbekistan
Mandana Bayat
Islamic Azad University, Najafabad Branch, Iran
Keywords: Navier–Stokes equations, axisymmetric diffuser, separated flow, two-fluid model.
Abstract
This paper discusses a numerical study of turbulent flow at Re = 1.56×104 in an axisymmetric diffuser with half-angle expansion α=14°, 18° и 90°. The results obtained are compared with known experimental data. The flow at the diffuser inlet is fully developed turbulent. To simulate the flow, a relatively recently developed two-fluid turbulence model in the Comsol Multiphysics software package was used. The paper also presents numerical results of the well-known SST and SA turbulence models, which are included in the Comsol Multiphysics software package. It is shown that the two-fluid turbulence model in the Comsol Multiphysics software package is capable of producing more accurate results than known models. In addition, it demonstrated good convergence and stability.
References
P. K. Chang, Separation of flow. Elsevier, 2014.
D. JOHN and J. R. ANDERSON, INTRODUCTION TO FLIGHT. McGraw-Hill, 2008.
A. D. Young, “Aerodynamics. By LJ CLANCY. Pitman, 1975. 610 pp.£ 10.00.,” J. Fluid Mech., vol. 77, no. 3, pp. 623–624, 1976.
T. Cebeci, G. J. Mosinskis, and A. M. O. SMITH, “Calculation of separation points in incompressible turbulent flows,” J. Aircr., vol. 9, no. 9, pp. 618–624, 1972.
V. Uruba and M. Knob, “Dynamics of a boundary layer separation,” Eng. Mech., vol. 16, no. 1, pp. 29–38, 2009.
J. Gustavsson, “Experiments on turbulent flow separation,” Masters, vol. 2, p. 2, 1998.
S. C. Yen and C. W. Yang, “Flow patterns and vortex shedding behavior behind a square cylinder,” J. Wind Eng. Ind. Aerodyn., vol. 99, no. 8, pp. 868–878, 2011.
M. K. Wong, L. C. Sheng, C. S. N. Azwadi, and G. A. Hashim, “Numerical study of turbulent flow in pipe with sudden expansion,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 6, no. 1, pp. 34–48, 2015.
R. A. Berdanier, “Turbulent flow through an asymmetric plane diffuser,” Masters Purdue Univ. West Lafayette, Indiana, US, 2011.
Azad, S., Riasi, A., Mahmoodi Darian, H., & Amiri Moghadam, H. (2017). Parametric study of a viscoelastic RANS turbulence model in the fully developed channel flow. Journal of Computational Applied Mechanics, 48(1), 65-74.
Ghasemian, M., & Nejat, A. (2015). Aerodynamic Noise computation of the flow field around NACA 0012 airfoil using large eddy simulation and acoustic analogy. Journal of Computational Applied Mechanics, 46(1), 41-50.
Javanbakht, A., & Ahmadi Danesh Ashtian, H. (2018). Impeller and volute design and optimization of the centrifugal pump with low specific speed in order to extract performance curves. Journal of Computational Applied Mechanics, 49(2), 359-366.
V. Chandavari and S. Palekar, “Diffuser angle control to avoid flow separation,” Int. J. Tech. Res. Appl., vol. 2, no. 5, pp. 16–21, 2014.
Fakhar, M. H., Fakhar, A., Tabatabaei, H., & Nouri-Bidgoli, H. (2020). Investigation of instable fluid velocity in pipes with internal nanofluid flow based on Navier-Stokes equations. Journal of Computational Applied Mechanics, 51(1), 122-128.
Noghrehabadi, A., Daneh Dezfuli, A., & Alipour, F. (2019). Solving single phase fluid flow instability equations using Chebyshev Tau-QZ polynomial. Journal of Computational Applied Mechanics, 50(1), 135-139.
Abdelkarim, B., & Djedid, T. (2019). Numerical investigation of natural convection phenomena in uniformly heated trapezoidal Cylinder inside an elliptical Enclosure. Journal of Computational Applied Mechanics, 50(2), 315-323.
H. Le, P. Moin, and J. Kim, “Direct numerical simulation of turbulent flow over a backward-facing step,” J. Fluid Mech., vol. 330, pp. 349–374, 1997.
F. Durst, A. Melling, and J. H. Whitelaw, “Low Reynolds number flow over a plane symmetric sudden expansion,” J. Fluid Mech., vol. 64, no. 1, pp. 111–128, 1974.
W. Cherdron, F. Durst, and J. H. Whitelaw, “Asymmetric flows and instabilities in symmetric ducts with sudden expansions,” J. Fluid Mech., vol. 84, no. 1, pp. 13–31, 1978.
O. Törnblom, A. Herbst, and A. V Johansson, “Separation control in a plane asymmetric diffuser by means of streamwise vortices experiment, modelling and simulation,” in The 5th Symposium on Smart Control of Turbulence, 2004.
M. Stieglmeier, C. Tropea, N. Weiser, and W. Nitsche, “Experimental investigation of the flow through axisymmetric expansions,” J. Fluids Eng. Trans. ASME, vol. 111, no. 4, pp. 464–471, 1989, doi: 10.1115/1.3243669.
D. Sagar, A. R. Paul, and A. Jain, “Computational fluid dynamics investigation of turbulent separated flows in axisymmetric diffusers,” Int. J. Eng. Sci. Technol., vol. 3, no. 2, 2011.
Z. Malikov, “Mathematical model of turbulence based on the dynamics of two fluids,” Appl. Math. Model., vol. 82, pp. 409–436, 2020.
Z. M. Malikov and M. E. Madaliev, “New two-fluid turbulence model based numerical simulation of flow in a flat suddenly expanding channel,” Her. Bauman Moscow State Tech. Univ. Ser. Nat. Sci., no. 4, 2021, doi: 10.18698/1812-3368-2021-4-24-39.
M. E. Madaliev, “Numerical simulation of turbulent flows on the basis of a two-fluid model of turbulence,” Vestn. Tomsk. Gos. Univ. Mat. i Mekhanika, no. 82, 2023, doi: 10.17223/19988621/82/10.
Z. M. Malikov and M. E. Madaliev, “Numerical simulation of flow in a two-dimensional flat diffuser based on two fluid turbulence models,” Comput. Res. Model., vol. 13, no. 6, 2021, doi: 10.20537/2076-7633-2021-13-6-1149-1160.
F. Menter, “Zonal two equation kw turbulence models for aerodynamic flows,” in 23rd fluid dynamics, plasmadynamics, and lasers conference, 1993, p. 2906.
P. Spalart and S. Allmaras, “A one-equation turbulence model for aerodynamic flows,” in 30th aerospace sciences meeting and exhibit, 1992, p. 439.
P. R. Spalart, “Comments on the Feasibility of LES for Wings and on the Hybrid RANS/LES Approach,” in Proceedings of the First AFOSR International Conference on DNS/LES, 1997, 1997, pp. 137–147.
Шоев, М., Хайдаров, С., & Чоршанбиева, Л. (2022). ИСПОЛЬЗОВАНИЕ МЕТОДОВ КОНЕЧНЫХ РАЗНОСТЕЙ ДЛЯ УРАВНЕНИЯ ЭЙЛЕРА. Solution of social problems in management and economy, 1(7), 88-95.
Abdulxaev, Z. E., Madraksimov, M. M., & Shoev, M. A. (2020). Betonni issiqlik bilan ishlov berishda tekis reflektorlardan foydalanish asoslari. Ученый XXI века, (12-1 (71)), 8-12.
Shoev, M., Safarov, T., Abdukhamidov, S., & Omonov, Z. (2023). Numerical solution of the heat transfer equation using different schemes. In E3S Web of Conferences (Vol. 452, p. 04011). EDP Sciences.
Ibrokhimov, A. R. U., Shoev, M. A. U., & Qurbonova, N. (2021). Numerical Simulation of Two-Phase Flux in Centrifugal Separator. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 2(12), 238-243.
Madaliev, E. U. (2021). Investigation of the Spalart-Allmares Turbulence Model for Calculating a Centrifugal Separator. Middle European Scientific Bulletin, 18, 137-147.
Madaliev, E., Madaliev, M., Tursunaliev, M., Shoev, M., & Tashpulatov, N. (2023, March). Direct numerical simulation of flow in a flat suddenly expanding channel based on nonstationary Navier-Stokes equations. In AIP Conference Proceedings (Vol. 2612, No. 1). AIP Publishing.
Shoyev, M. A., Ibroximov, A. R., Madaliev, M. E., Dusiyorov, J. J., Rayimqulov, O. Q., & Ismatov, M. N. (2023, April). Numerical study of modified centrifugal cyclone. In E3S Web of Conferences (Vol. 401, p. 01036).
Madaliev, M. E. U., Rakhmankulov, S. A., Shoev, M. A. U., & Ibrokhimov, A. R. U. (2023). Modeling of Deformation Processes and Flow of Highly Concentrated Suspensions in Cylindrical Pipelines.
Madaliev, E. U., Madaliev, M. E. U., Mullaev, I. I., Shoev, M. A. U., & Ibrokhimov, A. R. U. (2021). Comparison of Turbulence Models for the Problem of an Asymmetric Two-Dimensional Plane Diffuser. Middle European Scientific Bulletin, 18, 119-127.
Abdulkhaev, Z. E., Madraximov, M. M., & Shoyev, M. A. O. (2021). Reducing the Level of Groundwater In The City of Fergana. Int. J. Adv. Res. Sci. Commun. Technol, 2(2), 67-72.
Erkinjonovich, A. Z., Mamadaliyevich, M. M., & Axmadjon o’g’li, S. M. (2021). Reducing the Level of Groundwater In The City of Fergana. Int. J. Adv. Res. Sci. Commun. Technol, 2(2), 67-72.
Erkinjonovich, A. Z., Mamadaliyevich, M. M., Muxammadovich, A. A., & Axmadjon o’g’li, S. M. (2021). Heat Calculations of Water Cooling Tower. Int. J. Adv. Res. Sci. Commun. Technol, 2(1), 173-176.
Erkinjonovich, A. Z., Mamadaliyevich, M. M., O’G’Li, S. M. A., & Egamberdiyevich, T. N. (2021). Farg’ona Shahar Yer Osti Sizot Suvlarining Ko’tarilish Muammosi Va Yechimlari. Oriental renaissance: Innovative, educational, natural and social sciences, 1(3), 138-144.
Erkinjonovich, A. Z., Mamadaliyevich, M. M., Muxammadovich, A. A., & Axmadjon o’g’li, S. M. (2021). Heat Calculations of Water Cooling Tower. Int. J. Adv. Res. Sci. Commun. Technol, 2(1), 173-176.
ABDULKHAEV, Z. E., Sattorov, A. M., & Shoev, M. A. O. (2021). Protection of Fergana City from Groundwater. Euro Afro Studies International Journal, 6, 70-81.