Automated Logistics Processes Improvement in Logistics Facilities

Nevliudov Igor

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Maksymova Svitlana

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Chala Olena

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Bronnikov Artem

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Vzhesnievskyi Maksym

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

##semicolon## Warehouse system, Robot, Logistics, Automated warehouse systems


सार

Modern trends in the development of the economy lead to a significant increase in the needs of enterprises for warehouses, which provide temporary storage of stocks of material resources, work in progress and finished products. In this paper we analyzed main modern management methods in warehouses, their differences, and advantages. Authors propose their software development for automated system of logistics processes in warehouses. For operating with user requests a special server based on NodeJS was implemented.


##submission.citations##

Attar, H., & et al.. (2022). Zoomorphic mobile robot development for vertical movement based on the geometrical family caterpillar. Computational Intelligence and Neuroscience, 2022.

Matarneh, R., & et al.. (2017). Building robot voice control training methodology using artificial neural net. International Journal of Civil Engineering and Technology, 8(10), 523-532.

Maksymova, S., & et al.. (2017). Voice Control for an Industrial Robot as a Combination of Various Robotic Assembly Process Models. Journal of Computer and Communications, 5, 1-15.

Khan, A., & et al.. (2015). Some Effect of Chemical Treatment by Ferric Nitrate Salts on the Structure and Morphology of Coir Fibre Composites. Advances in Materials Physics and Chemistry, 5(1), 39-45.

Attar, H., & et al.. (2022). Control System Development and Implementation of a CNC Laser Engraver for Environmental Use with Remote Imaging. Computational Intelligence and Neuroscience, 2022.

Abu-Jassar, A. T., & et al.. (2022). Electronic user authentication key for access to HMI/SCADA via unsecured internet networks. Computational Intelligence and Neuroscience, 2022.

Nevliudov, I., & et al.. (2020). Development of a cyber design modeling declarative Language for cyber physical production systems. J. Math. Comput. Sci., 11(1), 520-542.

Baker, J. H., & et al.. (2021). Some interesting features of semantic model in Robotic Science. SSRG International Journal of Engineering Trends and Technology, 69(7), 38-44.

Abu-Jassar, A. T., & et al.. (2021). Some Features of Classifiers Implementation for Object Recognition in Specialized Computer systems. TEM Journal: Technology, Education, Management, Informatics, 10(4), 1645-1654.

Al-Sharo, Y. M., & et al.. (2021). Neural Networks As A Tool For Pattern Recognition of Fasteners. International Journal of Engineering Trends and Technology, 69(10), 151-160.

Ronald Joshua Salvador, & et al.. (2023). Service Allocation for Inbound Logistics using System Generated Software. Ani: Letran Calamba Research Report, 19.1, 1-1.

Friska Heriyanti,& Aulia Ishak, (2020). Design of logistics information system in the finished product warehouse with the waterfall method: review literature. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, 012100.

Muhammad Gufran KHAN, & et al.. (2022). Smart warehouse management system: Architecture, real-time implementation and prototype design. Machines, 10.2, 150.

Lorenc, A., & Lerher, T. (2020). PickupSimulo–prototype of intelligent software to support warehouse managers decisions for product allocation problem. Applied Sciences, 10(23), 8683.

Lucia, Cassettari, & et al.. (2021). A 4.0 automated warehouse storage and picking system for order fulfillment. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 2021, 7-9.

Tong, Q., Ming, X., & Zhang, X. (2023). Construction of Sustainable Digital Factory for Automated Warehouse Based on Integration of ERP and WMS. Sustainability, 15(2), 1022.

D. Mozyrska and E. Pawluszewicz. (2012). Controllability of h-difference linear control systems with two fractional orders. Proceedings of the 13th International Carpathian Control Conference (ICCC), 501-506.

A. Tsymbal, & A. Bronnikov. (2012). Decision-making in Robotics and adaptive tasks. Proceedings of IEEE East-West Design & Test Symposium (EWDTS'2012), 417-420.

Z. Bartosiewicz, & E. Pawluszewicz. (2008). Realizations of Nonlinear Control Systems on Time Scales. IEEE Transactions on Automatic Control, 53(2), 571-575.

Igor Nevliudov, & et al.. (2022). The Use of Neural Networks for the Technological Objects Recognition Tasks in Computer-Integrated Manufacturing. 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, 1-5.

Rohani, V.A., & et al. (2022). Illustrating scholar–practitioner collaboration for data-driven decision-making in the optimization of logistics facility location and implications for increasing the adoption of AR and VR practices, The TQM Journal, 34(2), 280-302.

E. Nielsen, & et al.. (2023). Benefits Realization of Robotic Process Automation (RPA) Initiatives in Supply Chains. In IEEE Access, 11, 37623-37636.

Igor Nevliudov, & et al.. (2021). Automation of Mathematical Modeling of Physical and Technological Processes in the Electronic Devices Manufacture. Proceedings of the XIІ International Scientific Conference «Functional Basis of Nanoelectronics» – Odessa, September 20-24, 74-77.

Igor Nevliudov, & et al.. (2019). Mathematical Model of Equivalent Stress Value Dependence from Displacement of RF MEMS Membrane. 2019 IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Polyana, Ukraine, 2019, 83-86.

Невлюдов І.Ш., Демська Н.П., Чала О.О., Демська А.І. (2018). Групове управління гнучкими виробничими системами у виготовленні МЕМС виробів. Міжнародна науково-практична конференція «Математичне моделювання процесів в економіці та управлінні проектами і програмами (ММП2018)», Коблево, 10-14 вересня 2018 р. Харків: ХНУРЕ, 101 -103

Igor Nevliudov, & et al.. (2021). Automation of Mathematical Modeling of Physical and Technological Processes in the Electronic Devices Manufacture. Proceedings of the XIІ International Scientific Conference «Functional Basis of Nanoelectronics» – Odessa, September 20-24, 74-77.

Iryna Zharikova, & et al.. (2023). Flexible Printed Structures Quality Models for Mobile Robot Platform. Journal of Natural Sciences and Technologies, 1(1), 77–84.

Боцман І., і ін. (2021). Розробка автоматизованої системи контролю друкованих плат із використанням методів машинного навчання. Achievements and prospects of modern scientific research. Abstracts of the 2nd International scientific and practical conference (January 11-13, 2021).–Editorial EDULCP: Buenos Aires, Argentina, 177-184.

Невлюдов І. Ш., і ін. (2019) Трансфер технологій у сучасній науці, освіті та виробництві в умовах четвертої промислової революції «ІНДУСТРІЯ 4.0» / Невлюдов І. Ш., Чала О. О., Олександров Ю. М. // Сучасний рух науки: тези доп. VIII міжнародної науково-практичної інтернет-конференції, 3-4 жовтня 2019 р. – Дніпро, 2, 604-608.