ON CONSTRUCTION OF REAL AW*-FACTORS
Khabibjon Khamitovich
Tashkent state pedagogical University named after Nizami, Tashkent, Uzbekistan
##semicolon## AW*-algebra, C*-algebra, factor, involutive *-antiautomorphism, complex Hilbert space, commutant, complexification, linear *-automorphism, conjugate, bicommutant, quaternions algebra, projection, isomorphic.
सार
The paper of the is to initiate the study of real AW*-algebras in the framework of the theory of real C*-algebras and W*-algebras. It happens that in some aspects real AW*-algebras behave unlike complex AW*-algebras and sometimes their properties are completely different also from corresponding properties of real W*-algebras. We prove that if the complexification of a real C*-algebra A is a (complex) AW*-algebra then A itself is a real AW∗-algebra. By modifying the Takenouchi’s examples of complex non-W*, AW*-factors we show that there exist real non-W*, AW*-factors. The correspondence between real AW*-factors and involutive (i.e. with period 2) *-anti-automorphisms of (complex) AW*-factors is established. We give the decomposition of real AW*-algebras into types I, II and III similar to the case of complex AW*-algebras or W*-algebras. It is proved that if A is a real AW*-factor and its complexification is also an AW*-algebra (and therefore an AW*-factor) thenthetypesof A and M coincide.
##submission.citations##
1. Ayupov Sh.A., Azamov N.A. Commutators and Lie isomorphisms of skew elements in prime operator algebras. Comm. Algebra, 1996, 24, N 4, pp.1501-1520.
2. Ayupov Sh.A., Rakhimov A.A., Usmanov Sh.M. Jordan, Real and Lie Structures in Operator Algebras. MAIA, Kluwer Academic Publishers. 1997. Vol.418, 235p.
3. Berberian S.K. Baer *-rings. Springer-Verlag, BerlinHeidelbergN.Y. 1972.
4. Isidro J.M., Palacios A., Rodriguez. Proc. Amer. Math. Soc., 1996, N11, Vol.124, pp. 3407-3410.
5. Kaplansky I. Projections in Banach algebras. Ann. Math., 1951, 53, pp.235-249.
6. Kaplansky I. Algebras of type I., Ann. Math. 1952, 56, pp. 460-472.
7. Li Bing-Ren. Real operator algebras. World Scientific Publishing Co. Pte. Ltd. 2003. 241p.
8. Li Bing-Ren. Introduction to Operator Algebras. World Sci.. Singapore., 1992. pp. 237-256.
9. Li Minli, Li Li Bing-Ren. Acta Math. Sinica (N.S.), 1998. N1, Vol.14, pp. 85-90.
10. Pedersen G. Operator algebras with weakly closed abelian subalgebras. Bull. London Math. Soc. 1972, 4, pp. 171-175.
11. PutnamC.R.OnnormaloperatorsinHilbertspaces.Amer.J.Math.1951,Vol.73, pp. 357-362.
12. Sakai S. Operator Algebras in Dynamical Systems. Encyclopedia of Mathematics and its Applications, 1991, Vol. 41, Cambridge University Press, Cambridge.
13. Størmer E. On anti-automorphisms of von Neumann algebras. Pacific J. Math., 1967, N2, Vol.21, pp 349-370.
14. Størmer E. Real structure in the hyperfinite factor. Duke Math. J., 1980. Vol. 47. N 1. pp. 145-153.
15. Takesaki M. Theory of Operator Algebras. I, Springer-Verlag. 1979. VIII + 415p.