Effect of Frame Processing Frequency on Object Identification Using MobileNetV2 Neural Network for a Mobile Robot

Dmytro Gurin

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Vladyslav Yevsieiev

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Svitlana Maksymova

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Amer Abu-Jassar

Faculty of Information Technology, Department of Computer Science, Ajloun National University, Ajloun, Jordan

##semicolon## Industry 4.0, Mobile Robots##common.commaListSeparator## Work Area, Computer Vision##common.commaListSeparator## Frame Processing Frequency, Identification Speed, Recognition Accuracy


सार

This article is devoted to the analysis of the relationship between frame processing frequency, identification speed, recognition accuracy and system resources. The article presents a mathematical description of the dependencies, which allows for a quantitative assessment of the effect of changing the processing frequency on these parameters. A program code based on the Python language was developed, which integrates the MobileNetV2 model for practical testing and optimization. The conducted experiments allow us to identify optimal settings that provide a balance between recognition accuracy and processing speed, taking into account system resources. The results of the study provide useful recommendations for improving computer vision systems in mobile robots


##submission.citations##

Kuzmenko, O., & et al. (2024). Robot Model for Mines Searching Development. Multidisciplinary Journal of Science and Technology, 4(6), 347-355.

Yevsieiev, V., & et al. (2024). The Sobel algorithm implementation for detection an object contour in the mobile robot’s workspace in real time. Technical Science Research in Uzbekistan, 2(3), 23-33.

Abu-Jassar, A., & et al. (2024). The Optical Flow Method and Graham’s Algorithm Implementation Features for Searching for the Object Contour in the Mobile Robot’s Workspace. Journal of Universal Science Research, 2(3), 64-75.

Yevsieiev, V., & et al. (2024). The Canny Algorithm Implementation for Obtaining the Object Contour in a Mobile Robot’s Workspace in Real Time. Journal of Universal Science Research, 2(3), 7–19.

Maksymova, S., & et al. (2024). The Lucas-Kanade method implementation for estimating the objects movement in the mobile robot’s workspace. Journal of Universal Science Research, 2(3), 187-197.

Yevsieiev, V., & et al. (2024). Using Contouring Algorithms to Select Objects in the Robots’ Workspace. Technical science research in Uzbekistan, 2(2), 32–42.

Nevliudov, I. S., & et al. (2023). Conveyor Belt Object Identification: Mathematical, Algorithmic, and Software Support. Appl. Math. Inf. Sci. 17, 6, 1073-1088.

Abu-Jassar, A. T., Al-Sharo, Y. M., Lyashenko, V., & Sotnik, S. (2021). Some Features of Classifiers Implementation for Object Recognition in Specialized Computer systems. TEM Journal: Technology, Education, Management, Informatics, 10(4), 1645-1654.

Al-Sharo, Y. M., Abu-Jassar, A. T., Sotnik, S., & Lyashenko, V. (2021). Neural networks as a tool for pattern recognition of fasteners. International Journal of Engineering Trends and Technology, 69(10), 151-160.

Sotnik, S., Mustafa, S. K., Ahmad, M. A., Lyashenko, V., & Zeleniy, O. (2020). Some features of route planning as the basis in a mobile robot. International Journal of Emerging Trends in Engineering Research, 8(5), 2074-2079.

Гиренко, А. В., Ляшенко, В. В., Машталир, В. П., & Путятин, Е. П. (1996). Методы корреляционного обнаружения объектов. Харьков: АО “БизнесИнформ, 112.

Matarneh, R., & et al. (2017). Building robot voice control training methodology using artificial neural net. International Journal of Civil Engineering and Technology, 8(10), 523–532.

Maksymova, S., & et al. (2017). Software for voice control robot: example of implementation. Open Access Library Journal, 4, 1-12.

Bortnikova, V., & et al. (2019). Structural parameters influence on a soft robotic manipulator finger bend angle simulation. In 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), IEEE, 35-38.

Mousavi, S. M. H., Victorovich, L. V., Ilanloo, A., & Mirinezhad, S. Y. (2022, November). Fatty liver level recognition using particle swarm optimization (PSO) image segmentation and analysis. In 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE) (pp. 237-245). IEEE.

Orobinskyi, P., Petrenko, D., & Lyashenko, V. (2019, February). Novel approach to computer-aided detection of lung nodules of difficult location with use of multifactorial models and deep neural networks. In 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM) (pp. 1-5). IEEE.

Sotnik, S., & et al.. (2022). Analysis of Existing Infliences in Formation of Mobile Robots Trajectory. International Journal of Academic Information Systems Research, 6(1), 13-20.

Sotnik, S., & et al.. (2022). Modern Industrial Robotics Industry. International Journal of Academic Engineering Research, 6(1),. 37-46.

Dobrovolskaya, I., & Lyashenko, V. (2013). Interrelations of banking sectors of European economies as reflected in separate indicators of the dynamics of their cash flows influencing the formation of the resource potential of banks. European Applied Sciences, 1-2, 114-118.

Работягов, А. В., Ляшенко, В. В., & Кобылин, О. А. (2016). Сегментация сложных изображений цитологических препаратов, Радиотехника: Всеукр. межвед. науч.-техн. Сб., 185, 87-94.

Kots, G. P., & Lyashenko, V. (2012). Banking sectors of the economies of European countries in the representation of statistical interrelation between indices that characterize their development. European Applied Sciences, 1, 461-465.

Kuzemin, A., & Lyashenko, V. (2009). Methods of comparative analysis of banks functioning: classic and new approaches. Information Theories & Applications, 16(4), 384-396.

Ляшенко В. В. (2007). Интерпретация и анализ статистических данных, описывающих процессы экономической динамики. Бизнес Информ, 9(2), 108-113.

Слюніна, Т. Л., Бережний, Є. Б., & Ляшенко, В. В. (2007). Розвиток вітчизняної мережі банківських установ: особливості та регіональні аспекти. Вісник ХНУ ім. В. Н. Каразіна. Економічна серія, 755. 84–88.

Putyatin, Y. P., & et al.. (2016) The Pre-Processing of Images Technique for the Material Samples in the Study of Natural Polymer Composites. American Journal of Engineering Research, 5(8), 221-226.

Lyashenko, V., Matarneh, R., & Kobylin, O. (2016). Contrast modification as a tool to study the structure of blood components. Journal of Environmental Science, Computer Science and Engineering & Technology, 5(3), 150-160.

Lyubchenko, V., & et al.. (2016). Digital image processing techniques for detection and diagnosis of fish diseases. International Journal of Advanced Research in Computer Science and Software Engineering, 6(7), 79-83.

Lyashenko, V. V., Matarneh, R., Kobylin, O., & Putyatin, Y. P. (2016). Contour Detection and Allocation for Cytological Images Using Wavelet Analysis Methodology. International Journal, 4(1), 85-94.

Lyashenko, V., Kobylin, O., & Ahmad, M. A. (2014). General methodology for implementation of image normalization procedure using its wavelet transform. International Journal of Science and Research (IJSR), 3(11), 2870-2877.

Sotnik, S., & Lyashenko, V. (2022). Prospects for Introduction of Robotics in Service. Prospects, 6(5), 4-9.

Al-Sharo Y., & et al. (2023). A Robo-hand prototype design gripping device within the framework of sustainable development. Indian Journal of Engineering, 20, e37ije1673.

Abu-Jassar, A. T., Attar, H., Lyashenko, V., Amer, A., Sotnik, S., & Solyman, A. (2023). Access control to robotic systems based on biometric: the generalized model and its practical implementation. International Journal of Intelligent Engineering and Systems, 16(5), 313-328.

Al-Sharo, Y. M., Abu-Jassar, A. T., Sotnik, S., & Lyashenko, V. (2023). Generalized Procedure for Determining the Collision-Free Trajectory for a Robotic Arm. Tikrit Journal of Engineering Sciences, 30(2), 142-151.

Lyashenko, V., Abu-Jassar, A. T., Yevsieiev, V., & Maksymova, S. (2023). Automated Monitoring and Visualization System in Production. International Research Journal of Multidisciplinary Technovation, 5(6), 9-18.

Kuzemin, A., & Lyashenko, V. (2008). Conceptual Foundations of Construction of the Models and Procedures for Prediction of the Avalanche-dangerous Situations Initiation. International Journal INFORMATION THEORIES & APPLICATIONS, 15(2), 153-158.

Kuzomin, O., Lyashenko, V., Dudka, O., Radchenko, V., & Vasylenko, O. (2020). Using of ontologies for building databases and knowledge bases for consequences management of emergency. International Journal of Advanced Trends in Computer Science and Engineering, 9(4), 5040-5045.

Zeleniy, O., Rudenko, D., Lyubchenko, V., & Lyashenko, V. (2022). Image Processing as an Analysis Tool in Medical Research. Image, 6(9), 135-141.

Abu-Jassar, A. T., Attar, H., Amer, A., Lyashenko, V., Yevsieiev, V., & Solyman, A. (2024). Remote Monitoring System of Patient Status in Social IoT Environments Using Amazon Web Services (AWS) Technologies and Smart Health Care. International Journal of Crowd Science.

Abu-Jassar, A. T., Attar, H., Amer, A., Lyashenko, V., Yevsieiev, V., & Solyman, A. (2024). Development and Investigation of Vision System for a Small-Sized Mobile Humanoid Robot in a Smart Environment. International Journal of Crowd Science.

Lyubchenko, V., Veretelnyk, K., Kots, P., & Lyashenko, V. (2024). Digital image segmentation procedure as an example of an NP-problem. Multidisciplinary Journal of Science and Technology, 4(4), 170-177.

Bai, Q., & et al. (2020). Object detection recognition and robot grasping based on machine learning: A survey. IEEE access, 8, 181855-181879.

Li, G., & et al. (2020). Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Science Robotics, 5(49), eabc8134.

Li, N., & et al. (2022). A triboelectric-inductive hybrid tactile sensor for highly accurate object recognition. Nano Energy, 96, 107063.

Song, Q., & et al. (2021). Object detection method for grasping robot based on improved YOLOv5. Micromachines, 12(11), 1273.

Koskinopoulou, M., & et al. (2021). Robotic waste sorting technology: Toward a vision-based categorization system for the industrial robotic separation of recyclable waste. IEEE Robotics & Automation Magazine, 28(2), 50-60.

Fan, J., & et al. (2022). Vision-based holistic scene understanding towards proactive human–robot collaboration. Robotics and Computer-Integrated Manufacturing, 75, 102304.