DEFECT ENGINEERING: APPLICATION IN AUTOMATION SYSTEM COMPONENTS PRODUCTION TECHNOLOGICAL PROCESSES

Svitlana Maksymova

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Olena Chala

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Keywords: Defect engineering, Automation system, MEMS, MOEMS, Silicon structures


Abstract

Defect engineering is a field of scientific development that finds application in various fields. At the same time, the goals of using its approaches may differ radically. This article provides an overview of common applications of this concept. The authors propose to use the capabilities of defect engineering in the production of MEMS and MOEMS to predict failures, as well as to make possible changes and adjustments to the technological process.


References

Невлюдов, И., Палагин, В., Чалая, Е. (2015). Технологии микросистемной техники (часть II). Технология приборостроения, Харьков, 2, 5-10.

Семенець, В. Невлюдов, І., Палагін В. А. (2011) Введення в мікросистемну техніку та нанотехнології. Харків «Комп. СМІТ», 416.

Чала, О. (2020). Дефектоутворення, як основа Defect Engineering в МЕМС та МОЕМС. Технология приборостоения, 1, 78–81.

Sotnik, S., Matarneh, R., & Lyashenko, V. (2017). System model tooling for injection molding. International Journal of Mechanical Engineering and Technology, 8(9), 378-390.

Lyashenko, V. V., Lyubchenko, V. A., Ahmad, M. A., Khan, A., & Kobylin, O. A. (2016). The Methodology of Image Processing in the Study of the Properties of Fiber as a Reinforcing Agent in Polymer Compositions. International Journal of Advanced Research in Computer Science, 7(1), 15-18.

Khan, A., Joshi, S., Ahmad, M. A., & Lyashenko, V. (2015). Some Effect of Chemical Treatment by Ferric Nitrate Salts on the Structure and Morphology of Coir Fibre Composites. Advances in Materials Physics and Chemistry, 5(1), 39-45.

Lyashenko, V. V., Deineko, Z. V., & Ahmad, M. A. Properties of wavelet coefficients of self-similar time series. In other words, 9, 16, 1492-1499.

Nevliudov, I., & et al.. (2020). Development of a cyber design modeling declarative Language for cyber physical production systems. J. Math. Comput. Sci., 11(1), 520-542.

Пилипенко,В.А., Горушко, В.А., Петлицкий, А.Н., Понарядов, В.В. Турцевич, А.С., Шведов, С.В. (2013) Методы и механизмы геттерирования кремниевых структур в производстве интегральных микросхем, Технология и конструирование в электронной аппаратуре., 2-3, 43-57.

Оксанич, А. П., Седин, Е. А. (2011)Разработка модели расчёта внутренних напряжений и деформаций в кремниевых эпитаксиальных структурах. Напівпровідникові матеріали, інформаційні технології та фотовольтаїка. Тези доповідей на Першій міжнародній науково-практичній конференції (НМІТФ-2011), Кременчук, Україна. 70.

Абдуллин, Ф. А., Пауткин, В. Е., Печерская, Е. А., Печерский, А. В. (2018) Применение методов селективного травления кремния для оценки качества пластин при изготовлении микромеханических датчиков. Модели, системы, сети в экономике, технике, природе и обществе, 1(25).

Филипенко, O.I., Чала, O.O., Відешин, M.I. (2017). Технологічні дефекти виробництва кремнієвих підкладок для функціональних відбиваючих поверхонь МОЕМС-перемикачів. Системи управління, навігації та зв’язку, Полтава: ПНТУ, 2 (42), 61-63.

Филипенко, O.I., Чала, O.O., Відешин, M.I. (2017). Технологічні фактори виробництва, що впливають на якість покриттів дзеркальних поверхонь МОЕМС-перемикачів. Наукові нотатки, 57, 178-183.

Kuzomin, O., Lyashenko, V., Tkachenko, M., Ahmad, M. A., & Kots, H. (2016). Preventing of technogenic risks in the functioning of an industrial enterprise. International Journal of Civil Engineering and Technology, 7(3), 262-270.

Lyashenko, V., Kobylin, O., Ahmad, M. A., & Khan, A. (2017). Study of composite materials for the engineering using wavelet analysis and image processing technology. International Journal of Mechanical and Production Engineering Research and Development, 7(6), 445-452.

Lyashenko, V., Sotnik, S., & Babker, A. Ma. (2018). Features of Packaging from Polymers in Pharmaceutics. Saudi Journal of Medical and Pharmaceutical Sciences, 4(2), 166-174.

Zhang, Y., & et al. (2021). Defect engineering in metal sulfides for energy conversion and storage. Coordination Chemistry Reviews, 448, 214147.

Kimoto, T., & Watanabe, H. (2020). Defect engineering in SiC technology for high-voltage power devices. Applied Physics Express, 13(12), 120101.

Shi, R., & et al. (2019). Defect engineering in photocatalytic nitrogen fixation. Acs Catalysis, 9(11), 9739-9750.

Wang, Z., & et al. (2022). Defect Engineering in Photocatalysts and Photoelectrodes: From Small to Big. Accounts of Materials Research, 3(11), 1127-1136.

Shi, Z., & et al. (2021). Defect engineering for expediting Li–S chemistry: strategies, mechanisms, and perspectives. Advanced Energy Materials, 11(23), 2100332.

Yan, X., & et al. (2021). Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 13(6), 3327-3345.

Zhang, Y., & et al. (2020). Defect engineering on electrode materials for rechargeable batteries. Advanced Materials, 32(7), 1905923.

Li, W., & et al. (2020). Defect engineering for fuel‐cell electrocatalysts. Advanced Materials, 32(19), 1907879.

Yu, B., & et al. (2021). Defect engineering enables synergistic action of enzyme-mimicking active centers for high-efficiency tumor therapy. Journal of the American Chemical Society, 143(23), 8855-8865.

Medeiros-Costa, I. C., & et al. (2021). Silanol defect engineering and healing in zeolites: opportunities to fine-tune their properties and performances. Chemical Society Reviews, 50(19), 11156-11179.

Zhu, J., & Mu, S. (2020). Defect engineering in carbon‐based electrocatalysts: insight into intrinsic carbon defects. Advanced Functional Materials, 30(25), 2001097.

Abdelnaby, H. & et al. (2012). Numerical simulation of heat generation during the back grinding process of silicon wafers. In IEEE Workshop on Microelectronics and Electron Devices, Boise, ID, 1-4.

И. Ш. Невлюдов, М. А. Омаров, К. Ю. Харенко (2006) Проектные решения повышения надежности кремниевых интегральных преобразователей механических величин. Радиотехника: Всеукр. межвед. науч.-техн. сб. Х. : ХНУРЭ, 147, 119–122.

Abdelnaby, H., & et al. (2012). Numerical simulation of heat generation during the back grinding process of silicon wafers. In IEEE Workshop on Microelectronics and Electron Devices, Boise, ID, 2012, 1-4.

Wilson, M. & et al. (2013). Importance of defect photoionization in silicon-rich SiNx dielectrics for high PID resistance. In IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, 0218-0222.

Margutti, G. & et al. (2014). Silicon defects characterization for low temperature ion implantation and spike anneal processes. In 20th International Conference on Ion Implantation Technology (IIT), Portland, OR, 1-4.

Filipenko O. & et al. (2019). Impact of Technological Operations Parameters on Moems Components Formation. In IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL). IEEE, 371-374.

Bai S. & et al. (2018). Defect engineering in photocatalytic materials. Nano Energy. 53, 296-336.

Hu Z. & et al. (2018). Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chemical Society Reviews. 47(9), 3100-3128.

Nevli̇udov, İ , & et al. (2019). Research Of Factors Influencing The Process Of Formation Of Welded Microconnections In Electronic Modules . Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering , 20, 181-187.

Zhang, L., & et al. (2019). Wind Speed Forecasting Using a Two-Stage Forecasting System With an Error Correcting and Nonlinear Ensemble Strategy. In IEEE Access, 7, 176000-176023.

Wei, L.& et al. (2019). Improved Markov Residual Error to Long-Medium Power Load Forecast Based on SVM Method. In First International Workshop on Education Technology and Computer Science, Wuhan, Hubei, 128-132.

Charan C. R. (2010), Application of Generalized Neuron Model in Short Term Load Forecasting under error functions. In Second International conference on Computing, Communication and Networking Technologies, Karur, 1-4.

Filipenko, O., & et al. (2019). Some Issues of Dependencies of Loss from Technological Features of Optical Switches for Communication Systems. In International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 599-603.

Filipenko, O., & et al. (2019). Impact of Technological Operations Parameters on Moems Components Formation. In IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL), Sozopol, Bulgaria, 371-374.

Funkendorf, A., & et al. (2019 )Mathematical Model of Adapted Ultrasonic Bonding Process for MEMS Packaging. In IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), IEEE, 79-82

Nevliudov, I., & et al. (2018) Using MEMS to adapt ultrasonic welding processes control in the implementation of modular robots assembly Processes. In XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), IEEE, 223-226,