USING THE HUMAN FACE RECOGNITION METHOD BASED ON THE MOBILENETV2 NEURAL NETWORK IN AUTHENTICATION SYSTEMS

Olena Chala

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Vladyslav Yevsieiev

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Svitlana Maksymova

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Ukraine

Amer Abu-Jassar

Department of Computer Science, College of Information Technology, Amman Arab University, Amman, Jordan

Keywords: Face Recognition, MobileNetV2v


Abstract

The rapid development of biometric authentication systems has led to the widespread adoption of face recognition technologies. This study explores the application of the MobileNetV2-based neural network for human face recognition in authentication systems. The advantages of MobileNetV2, such as its lightweight architecture and high computational efficiency, make it a suitable choice for real-time authentication on edge devices. The proposed method enhances recognition accuracy while maintaining fast processing speeds, ensuring a balance between security and performance. Experimental results demonstrate the effectiveness of the approach under varying lighting conditions and different angles of facial orientation. The study also discusses potential challenges, including spoofing attacks and dataset limitations, and proposes solutions to improve robustness. The findings contribute to the advancement of secure and efficient biometric authentication systems.


References

1. Yevsieiev, V., & et al. (2024). The Canny Algorithm Implementation for Obtaining the Object Contour in a Mobile Robot’s Workspace in Real Time. Journal of Universal Science Research, 2(3), 7–19.

2. Abu-Jassar, A., & et al. (2024). The Optical Flow Method and Graham’s Algorithm Implementation Features for Searching for the Object Contour in the Mobile Robot’s Workspace. Journal of Universal Science Research, 2(3), 64-75.

3. Yevsieiev, V., & et al. (2025). Development of a model for recognizing various objects and tools in a collaborative robot workspace. ACUMEN: International journal of multidisciplinary research, 2(1), 224-239.

4. Chala, O., & et al. (2024). Analysis of Systems for Coordination of Enterprise Subsystems Control. Journal of universal science research, 2(10), 127-137.

5. Al-Sharo, Y. M., Abu-Jassar, A. T., Sotnik, S., & Lyashenko, V. (2021). Neural networks as a tool for pattern recognition of fasteners. International Journal of Engineering Trends and Technology, 69(10), 151-160.

6. Abu-Jassar, A. T., Al-Sharo, Y. M., Lyashenko, V., & Sotnik, S. (2021). Some Features of Classifiers Implementation for Object Recognition in Specialized Computer systems. TEM Journal: Technology, Education, Management, Informatics, 10(4), 1645-1654.

7. Sotnik, S., Mustafa, S. K., Ahmad, M. A., Lyashenko, V., & Zeleniy, O. (2020). Some features of route planning as the basis in a mobile robot. International Journal of Emerging Trends in Engineering Research, 8(5), 2074-2079.

8. Baker, J. H., Laariedh, F., Ahmad, M. A., Lyashenko, V., Sotnik, S., & Mustafa, S. K. (2021). Some interesting features of semantic model in Robotic Science. SSRG International Journal of Engineering Trends and Technology, 69(7), 38-44.

9. Lyashenko, V., Abu-Jassar, A. T., Yevsieiev, V., & Maksymova, S. (2023). Automated Monitoring and Visualization System in Production. International Research Journal of Multidisciplinary Technovation, 5(6), 9-18.

10. Гиренко, А. В., Ляшенко, В. В., Машталир, В. П., & Путятин, Е. П. (1996). Методы корреляционного обнаружения объектов. Харьков: АО “БизнесИнформ, 112.

11. Sotnik, S. Overview: PHP and MySQL Features for Creating Modern Web Projects / S Sotnik, V. Manakov, V. Lyashenko //International Journal of Academic Information Systems Research (IJAISR). – 2023. – Vol. 7, Issue 1. – P. 11-17.

12. Lyashenko, V. V., Matarneh, R., Baranova, V., & Deineko, Z. V. (2016). Hurst Exponent as a Part of Wavelet Decomposition Coefficients to Measure Long-term Memory Time Series Based on Multiresolution Analysis. American Journal of Systems and Software, 4(2), 51-56.

13. Lyashenko, V. V., Matarneh, R., & Deineko, Z. V. (2016). Using the Properties of Wavelet Coefficients of Time Series for Image Analysis and Processing. Journal of Computer Sciences and Applications, 4(2), 27-34.

14. Tvoroshenko, I., Lyashenko, V., Ayaz, A. M., Mustafa, S. K., & Alharbi, A. R. (2020). Modification of models intensive development ontologies by fuzzy logic. International Journal of Emerging Trends in Engineering Research, 8(3), 939-944.

15. Matarneh, R., Tvoroshenko, I., & Lyashenko, V. (2019). Improving Fuzzy Network Models For the Analysis of Dynamic Interacting Processes in the State Space. International Journal of Recent Technology and Engineering, 8(4), 1687-1693.

16. Lyashenko, V., & et al.. (2016). The Methodology of Image Processing in the Study of the Properties of Fiber as a Reinforcing Agent in Polymer Compositions. International Journal of Advanced Research in Computer Science, 7(1), 15-18.

17. Kuzemin, A., Lуashenko, V., Bulavina, E., & Torojev, A. (2005). Analysis of movement of financial flows of economical agents as the basis for designing the system of economical security (general conception). In Third international conference «Information research, applications, and education (pp. 27-30).

18. Deineko, Zh., & et al.. (2021). Features of Database Types. International Journal of Engineering and Information Systems (IJEAIS), 5(10), 73-80.

19. Sotnik, S., & Lyashenko, V. (2022). Prospects for Introduction of Robotics in Service. Prospects, 6(5), 4-9.

20. Ahmad, M. A., Sinelnikova, T., Lyashenko, V., & Mustafa, S. K. (2020). Features of the construction and control of the navigation system of a mobile robot. International Journal of Emerging Trends in Engineering Research, 8(4), 1445-1449.

21. Lyashenko, V., Laariedh, F., Ayaz, A. M., & Sotnik, S. (2021). Recognition of Voice Commands Based on Neural Network. TEM Journal: Technology, Education, Management, Informatics, 10(2), 583-591.

22. Ahmad, M. A., Baker, J. H., Tvoroshenko, I., & Lyashenko, V. (2019). Computational complexity of the accessory function setting mechanism in fuzzy intellectual systems. International Journal of Advanced Trends in Computer Science and Engineering, 8(5), 2370-2377.

23. Tahseen A. J. A., & et al.. (2023). Binarization Methods in Multimedia Systems when Recognizing License Plates of Cars. International Journal of Academic Engineering Research (IJAER), 7(2), 1-9.

24. Orobinskyi, P., Deineko, Z., & Lyashenko, V. (2020). Comparative Characteristics of Filtration Methods in the Processing of Medical Images. American Journal of Engineering Research, 9(4), 20-25.

25. Mousavi, S. M. H., Lyashenko, V., & Prasath, V. B. S. (2019). Analysis of a robust edge detection system in different color spaces using color and depth images. Computer Optics, 43(4), 632-646.

26. Sotnik S., & et al.. (2022). Key Directions for Development of Modern Expert Systems. International Journal of Engineering and Information Systems (IJEAIS), 6(5), 4-10.

27. Baranova, V., Orlenko, O., Vitiuk, A., Yakimenko-Tereschenko, N., & Lyashenko, V. (2020). Information system for decision support in the field of tourism based on the use of spatio-temporal data analysis. International Journal of Advanced Trends in Computer Science and Engineering, 9(4), 6356-6361.

28. Kuzomin, O., Lyashenko, V., Tkachenko, M., Ahmad, M. A., & Kots, H. (2016). Preventing of technogenic risks in the functioning of an industrial enterprise. International Journal of Civil Engineering and Technology, 7(3), 262-270.

29. Abu-Jassar, A. T., Attar, H., Amer, A., Lyashenko, V., Yevsieiev, V., & Solyman, A. (2025). Development and Investigation of Vision System for a Small-Sized Mobile Humanoid Robot in a Smart Environment. International Journal of Crowd Science, 9(1), 29-43.

30. Abu-Jassar, A. T., Attar, H., Amer, A., Lyashenko, V., Yevsieiev, V., & Solyman, A. (2024). Remote Monitoring System of Patient Status in Social IoT Environments Using Amazon Web Services (AWS) Technologies and Smart Health Care. International Journal of Crowd Science, 8.

31. Kobylin, O., & Lyashenko, V. (2020). Time Series Clustering Based on the K-Means Algorithm. Journal La Multiapp, 1(3), 1-7.

32. Lyubchenko, V., Veretelnyk, K., Kots, P., & Lyashenko, V. (2024). Digital image segmentation procedure as an example of an NP-problem. Multidisciplinary Journal of Science and Technology, 4(4), 170-177.

33. Matarneh, R., Sotnik, S., Belova, N., & Lyashenko, V. (2018). Automated modeling of shaft leading elements in the rear axle gear. International Journal of Engineering and Technology (UAE), 7(3), 1468-1473.

34. Vasiurenko, O., Baranova, V., & Lyashenko, V. (2024). Probability distributions of interest rates on loans and deposits in a study of banking activities. Multidisciplinary Journal of Science and Technology, 4(1), 49-56.

35. Omarov, M., Tykha, T., & Lyashenko, V. (2019). Use of Wavelet Techniques in the Study of Internet Marketing Metrics. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 20, 157-163.

36. Yevsieiev, V., & et al. (2024). Calculation of the Distance to Objects in Collaborative Robots Workspace Using Computer Vision. Journal of universal science research, 2(11), 240-255.

37. Maksymova, S., & et al. (2025). A Prototype Development for an Automated Control System for Production Checkpoints. Multidisciplinary Journal of Science and Technology, 5(3), 287-297.

38. Gurin, D., & et al. (2024). MobileNetv2 Neural Network Model for Human Recognition and Identification in the Working Area of a Collaborative Robot. Multidisciplinary Journal of Science and Technology, 4(8), 5-12.

39. Yevsieiev, V., & et al. (2024). Capturing Human Movements in Real Time in Collaborative Robots Workspace within Industry 5.0. Journal of universal science research, 2(10), 232-247.

40. Gurin, D., & et al. (2024). Using Convolutional Neural Networks to Analyze and Detect Key Points of Objects in Image. Multidisciplinary Journal of Science and Technology, 4(9), 5-15.

41. Yevsieiev, V., & et al. (2024). Human Operator Identification in a Collaborative Robot Workspace within the Industry 5.0 Concept. Multidisciplinary Journal of Science and Technology, 4(9), 95-105.

42. Gurin, D., & et al. (2024). Effect of Frame Processing Frequency on Object Identification Using MobileNetV2 Neural Network for a Mobile Robot. Multidisciplinary Journal of Science and Technology, 4(8), 36-44.

43. Orobinskyi, P., Petrenko, D., & Lyashenko, V. (2019, February). Novel approach to computer-aided detection of lung nodules of difficult location with use of multifactorial models and deep neural networks. In 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM) (pp. 1-5). IEEE.

44. Kuzemin, A., & Lyashenko, V. (2009). Methods of comparative analysis of banks functioning: classic and new approaches. Information Theories & Applications, 16(4), 384-396.

45. Mousavi, S. M. H., MiriNezhad, S. Y., & Lyashenko, V. An Evolutionary-Based Adaptive Neuro-Fuzzy Expert System as a Family Counselor before Marriage with the Aim of Divorce Rate Reduction. Education, 1, 5.

46. Ali, W., & et al. (2021). Classical and modern face recognition approaches: a complete review. Multimedia tools and applications, 80, 4825-4880.

47. Srivastava, G., & Bag, S. (2024). Modern-day marketing concepts based on face recognition and neuro-marketing: a review and future research directions. Benchmarking: An International Journal, 31(2), 410-438.

48. Du, H., & et al. (2022). The elements of end-to-end deep face recognition: A survey of recent advances. ACM computing surveys (CSUR), 54(10s), 1-42.

49. Kim, M., & et al. (2022). Adaface: Quality adaptive margin for face recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 18750-18759).

50. Meng, Q., & et al. (2021). Magface: A universal representation for face recognition and quality assessment. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 14225-14234).

51. Qiu, H., & et al. (2021). Synface: Face recognition with synthetic data. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10880-10890).