PANDEMIYALAR DAVRIDA TIBBIY TASVIRLARNI TAHLIL QILISH UCHUN SUN'IY INTELLEKTGA ASOSLANGAN USULLARNING MUKAMMAL SHARHI

Xusanov K.X.

Muhammad al-Xorazmiy nomidagi TATUning Samarqand filiali, Samarqand, O‘zbekiston

Аxrorov M.Sh.

Muhammad al-Xorazmiy nomidagi TATUning Samarqand filiali, Samarqand, O‘zbekiston

Keywords: Covid-19, tibbiy tasvirlarni tahlil qilish, sun'iy intellekt (SI), mashinaviy o‘qitish (MO)


Abstract

Covid-19 pandemiyasi tezkor diagnostika zaruratini ochib berdi. Sun'iy intellekt (ai) tibbiy tasvirlarni tahlil qilishda, xususan, ko‘krak qafasi rentgenografiyasi, kt va o‘pka ultratovushida muhim vositaga aylandi. Ushbu maqolada mashinaviy o‘qitish, chuqur o‘qitish, transfer o‘qitish va gibrid yondashuvlar sohasidagi so‘nggi yutuqlar ko‘rib chiqilib, asosiy hissalar, ma’lumotlar to‘plamlari, muammolar va kelajakdagi yo‘nalishlar ta’kidlanadi.


References

1. Kashfia Sailunaz, Tansel Özyer, Jon Rokne, & Reda Alhajj. (2023). A survey of machine learning-based methods for COVID-19 medical image analysis. Medical & Biological Engineering & Computing, 61, 1257–1297. https://doi.org/10.1007/s11517-022-02758-y

2. World Health Organization (WHO). (2020). Timeline of WHO’s response to COVID-19. Retrieved from WHO website

3. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI) (pp. 234-241). Springer.

4. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778.

5. Howard, J., & Gugger, S. (2020). Fastai: A layered API for deep learning. Information, 11(2), 108.

6. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

7. Rajpurkar, P., Irvin, J., Zhu, K., et al. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225.

8. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1251–1258.

9. Litjens, G., Kooi, T., Bejnordi, B. E., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88.

10. Wang, L., Lin, Z. Q., & Wong, A. (2020). COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images. Scientific Reports, 10, 19549. https://doi.org/10.1038/s41598-020-76550-z