RESEARCH OF STOCK INDICES BASED ON ADAPTIVE WAVELET ANALYSIS METHODOLOGY FOR IMPLEMENTATION OF DIAGNOSTIC METHODS OF GLOBAL OIL MARKET
Bril Mykhailo
Department of Public Administration and Economic Policy, Simon Kuznets Kharkiv National University of Economics, Ukraine
Huz Ostap
Department of Business, Trade and Logistics, National Technical University «Kharkiv Polytechnic Institute», Ukraine
Roman Savchenko
Department of Business, Trade and Logistics, National Technical University «Kharkiv Polytechnic Institute», Ukraine
Keywords: Analysis, Futures, Diagnostics, Quotes
Abstract
The stock market plays an important role in the development of individual segments of the economy and society as a whole. However, among the individual areas of the stock market, a special place is occupied by the global oil market. This is due to its role not only in the energy sector, but also in the chemical industry, the production of various goods, which provides significant employment and economic stability. A comprehensive study of the dynamics of stock indices is important, which allows us to assess the functioning of the oil market, the directions of its development. In this aspect, it is also necessary to properly consider the possible conditions affecting the dynamics of quotations of such indices, which can be characterized as adaptive factors. Among such factors, the time horizon of data analysis stands out. Based on this, for the purposes of the study, the feasibility of using the adaptive wavelet methodology for the implementation of diagnostic methods for the global oil market is considered.
References
1. El Wassal, K. A. (2013). The development of stock markets: In search of a theory. International Journal of Economics and Financial Issues, 3(3), 606-624.
2. Goldstein, I. (2023). Information in financial markets and its real effects. Review of Finance, 27(1), 1-32.
3. Silichova, T., Volkodav, V., & Lyashenko, V. (2024). The cryptocurrency market as reflected by individual us industry stock indices as a factor in the development of small and medium-sized enterprises. Multidisciplinary Journal of Science and Technology, 4(3), 484-493.
4. Serhiienko, O., Novikova, T., & Lyashenko, V. (2023). Comparative Analysis of the Dynamics of Futures for the Dow Jones, S&P 500 and Nasdaq. International Journal of Academic Accounting, Finance & Management Research (IJAAFMR), 7(9), 22-28.
5. Bilotserkivskyi, O., Kaganovskyy, O. S., & Lyashenko, V. (2023). Dynamics of the Market for Shares of Medium-Sized Enterprises in the Cluster of US Food Companies with a Minimum Market Capitalization. Dynamics, 7(8), 30-38.
6. Hosseini, S. H., Shakouri G, H., & Peighami, A. (2016). A conceptual framework for the oil market dynamics: A systems approach. Energy Exploration & Exploitation, 34(2), 171-198.
7. Askari, H., & Krichene, N. (2008). Oil price dynamics (2002–2006). Energy economics, 30(5), 2134-2153.
8. Lyashenko, V., Bril, M., & Pyvavar, I. (2021) Empirical Estimates of Data on the Dynamics of Changes in the World Foreign Exchange Market. International Journal of Academic Management Science Research (IJAMSR), 5(11), 52-58.
9. Omarov, M., Tikhaya, T., & Lyashenko, V. (2019). Internet marketing metrics visualization methodology for related search queries. International Journal of Advanced Trends in Computer Science and Engineering, 8(5), 2277-2281.
10. Lyashenko, V. (2014). Efficiency of bank crediting of real sector of economy in the context of separate banking groups: an empirical example from Ukraine. International Journal of Accounting and Economics Studies, 2(2), 74-79.
11. Baranova, V., Zeleniy, O., Deineko, Z., & Lyashenko, V. (2019, October). Stochastic Frontier Analysis and Wavelet Ideology in the Study of Emergence of Threats in the Financial Markets. In 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T) (pp. 341-344). IEEE.
12. Азаренкова, Г., & Ляшенко, В. (2009). Відношення переваг у порівняльній оцінці діяльності банків. Банківська справа, 5, 65-72.
13. Ляшенко В. В. (2007). Интерпретация и анализ статистических данных, описывающих процессы экономической динамики. Бизнес Информ, 9(2), 108-113.
14. Слюніна, Т. Л., Бережний, Є. Б., & Ляшенко, В. В. (2007). Розвиток вітчизняної мережі банківських установ: особливості та регіональні аспекти. Вісник ХНУ ім. В. Н. Каразіна. Економічна серія, 755. 84–88.
15. Kuzemin, A., & Lyashenko, V. (2006). Fuzzy set theory approach as the basis of analysis of financial flows in the economical security system. International Journal Information Theories & Applications, 13(1), 45-51.
16. Vasiurenko, O., Lyashenko, V., Baranova, V., & Deineko, Z. (2020). Spatial-Temporal Analysis the Dynamics of Changes on the Foreign Exchange Market: an Empirical Estimates from Ukraine. Journal of Asian Multicultural Research for Economy and Management Study, 1(2), 1-6.
17. Mustafa, S. K., Ayaz, A. M., Baranova, V., Deineko, Z., Lyashenko, V., & Oyouni, A. A. A. (2020). Using wavelet analysis to assess the impact of COVID-19 on changes in the price of basic energy resources. International Journal of Emerging Trends in Engineering Research, 8(7), 2907-2912.
18. Kots, G. P., & Lyashenko, V. (2012). Banking sectors of the economies of European countries in the representation of statistical interrelation between indices that characterize their development. European Applied Sciences, 1, 461-465.
19. Dobrovolskaya, I., & Lyashenko, V. (2013). Interrelations of banking sectors of European economies as reflected in separate indicators of the dynamics of their cash flows influencing the formation of the resource potential of banks. European Applied Sciences, 1-2, 114-118.
20. Kuzemin, A., & Lyashenko, V. (2009). Methods of comparative analysis of banks functioning: classic and new approaches. Information Theories & Applications, 16(4), 384-396.
21. Kuzemin, O., & Lyashenko, V. Microsituation Concept in GMES Decision Support Systems/A. Kuzemin, V. Lуashenko. Intelligent Data Processing in Global Monitoring for Environment and Security (pр. 217–238).–2011.–Р, 217-238.
22. Куштим, В. В., & Ляшенко, В. В. (2007). Динаміка розвитку банківського сегмента міжнародного фінансового ринку. Фінанси України, (12), 96-105.
23. Lyashenko, V., Abu-Jassar, A. T., Yevsieiev, V., & Maksymova, S. (2023). Automated Monitoring and Visualization System in Production. International Research Journal of Multidisciplinary Technovation, 5(6), 9-18.
24. Deineko, Zh., & et al.. (2021). Features of Database Types. International Journal of Engineering and Information Systems (IJEAIS), 5(10), 73-80.
25. Pyrohova, S., Gudymenko, V., & Lyashenko, V. (2024). Dynamics of commodity indices and shares of manufacturing companies as a factor in managing the assortment and inventory of an enterprise. Multidisciplinary Journal of Science and Technology, 4(3), 176-185.
26. Vasiurenko, O., Baranova, V., & Lyashenko, V. (2024). Probability distributions of interest rates on loans and deposits in a study of banking activities. Multidisciplinary Journal of Science and Technology, 4(1), 49-56.
27. Баранова В. В., Ляшенко В. В. Інфляція, вартість банківських ресурсів та мережа банківських філій – окремі аспекти впливу та взаємозалежності. Економіка розвитку. 2007. № 4. С. 64–67.
28. Vasiurenko, O., & Lyashenko, V. (2020). Wavelet coherence as a tool for retrospective analysis of bank activities. Economy and forecasting, (2), 32-44.
29. Baranova, V., Orlenko, O., Vitiuk, A., Yakimenko-Tereschenko, N., & Lyashenko, V. (2020). Information system for decision support in the field of tourism based on the use of spatio-temporal data analysis. International Journal of Advanced Trends in Computer Science and Engineering, 9(4), 6356-6361.
30. Sheludʹko, N., Vasiurenko, O., Lyashenko, V., & Morozova, N. (2020). Gold and Bitcoin Price Dynamics as a Reflection of Investor Sentiment. Journal La Bisecoman, 1(4), 19-25.
31. Lyashenko, V., Serhiienko, O., & Bilotserkivskyi, O. (2022). Dynamics of Changes in Commodity Indices for Commodities: Wheat, Corn, Soybeans, Sugar, Cocoa. Dynamics, 6(10), 74-80.
32. Omarov, M., Tykha, T., & Lyashenko, V. (2019). Use of Wavelet Techniques in the Study of Internet Marketing Metrics. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 20, 157-163.
33. Baranova V., & et al.. (2022). Dynamics of Development of the USA, Canada and UK Financial Markets in the Display of Stock Indices of their Banking Institutions. International Journal of Academic Accounting, Finance & Management Research (IJAAFMR), 6(4), 1-8.
34. Babichev, A., & et al.. (2023). Wavelet Methodology for Analyzing Internet Marketing Metrics in Managing the Product Policy of the Business Entity. International Journal of Academic Information Systems Research, 7(5), 17-23.
35. Khan, F., Muhammadullah, S., Sharif, A., & Lee, C. C. (2024). The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models. Energy Economics, 130, 107269.
36. Esmaeili, P., Rafei, M., Salari, M., & Balsalobre-Lorente, D. (2024). From oil surges to renewable shifts: Unveiling the dynamic impact of supply and demand shocks in global crude oil market on US clean energy trends. Energy Policy, 192, 114252.
37. Escribano, A., Koczar, M. W., Jareño, F., & Esparcia, C. (2023). Shock transmission between crude oil prices and stock markets. Resources Policy, 83, 103754.
38. Zhang, Y., & Umair, M. (2023). Examining the interconnectedness of green finance: an analysis of dynamic spillover effects among green bonds, renewable energy, and carbon markets. Environmental Science and Pollution Research, 30(31), 77605-77621.
39. Soni, R. K., Nandan, T., & Chatnani, N. N. (2023). Dynamic association of economic policy uncertainty with oil, stock and gold: a wavelet-based approach. Journal of Economic Studies, 50(7), 1501-1525.
40. Kirikkaleli, D. (2021). Analyses of wavelet coherence: financial risk and economic risk in China. Journal of Financial Economic Policy, 13(5), 587-599.
41. Aloui, C., & Hkiri, B. (2014). Co-movements of GCC emerging stock markets: New evidence from wavelet coherence analysis. Economic Modelling, 36, 421-431.
42. Ramzan, M., Adebayo, T. S., Iqbal, H. A., Razi, U., & Wong, W. K. (2023). Analyzing the nexus between financial risk and economic risk in India: Evidence through the lens of wavelet coherence and non-parametric approaches. Heliyon, 9(3), e14180.
43. Bhuiyan, R. A., Rahman, M. P., Saiti, B., & Ghani, G. M. (2018). Financial integration between sukuk and bond indices of emerging markets: Insights from wavelet coherence and multivariate-GARCH analysis. Borsa Istanbul Review, 18(3), 218-230.
44. Torrence, С., & Webster, P. J. (1999). Interdecadal changes in the ENSO–monsoon system. Journal of climate, 12(8), 2679-2690.
45. Heil, C.E., & Walnut, D.F. (1989). Continuous and discrete wavelet transforms. SIAM review, 31(4), 628- 666.
46. Kingsbury, N. (1999). Image processing with complex wavelets. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1760), 2543-2560.