EXPLORING MOTION CAPTURE ALGORITHMS IN COMPUTER VISION USING INTEL DEPTH CAMERA

M.D.Ollaberganova

T.A. Xudaybergenov

Keywords: motion capture, virtual reality, triangulation, computer vision, machine learning


Abstract

The analysis of existing approaches to tracking the human body revealed the presence of

problems when capturing movements in a three-dimensional coordinate system. The promise of

motion capture systems based on computer vision is noted. Existing research on markerless motion

capture systems only considers positioning in 2D space. Therefore, the goal of the study was to

improve the accuracy of determining the coordinates of the human body in three-dimensional

coordinates by developing a motion capture method based on computer vision and triangulation

algorithms


References

1. Lind C.M., Abtahi F., Forsman M. Wearable Motion Capture Devices for the Prevention

of Work-Related Musculoskeletal Disorders in Ergonomics – An Overview of Current

Applications, Challenges, and Future Opportunities. Sensors. 2023;23(9):4259.

2. Sers R., Forrester S., Moss E., Ward S., Ma J., Zecca M. Validity of the Perception

Neuron Inertial Motion Capture System for Upper Body Motion Analysis. Measurement.

2020;149:107024.

3. Bauer P., Lienhart W., Jost S. Accuracy Investigation of the Pose Determination of a VR

System. Sensors. 2021;21(5):1622.

4. Irshad M.T., Nisar M.A., Gouverneur P., Rapp M., Grzegorzek M. AI Approaches

towards Prechtl’s Assessment of General Movements: A Systematic Literature Review. Sensors.

2020;20(18):5321.

5. Merriaux P., Dupuis Y., Boutteau R., Vasseur P., Savatier X. A Study of Vicon System

Positioning Performance. Sensors. 2017;17(7):1591.

6. Nakano N., Sakura T., Ueda K., Omura L., Kimura A., Iino Y., et al. Evaluation of 3D

Markerless Motion Capture Accuracy Using OpenPose with Multiple Video Cameras. Frontiers

in Sports and Active Living. 2020;2:50.

7. Coronado E., Fukuda K., Ramirez-Alpizar I.G., Yamanobe N., Venture G., Harada K.

Assembly Action Understanding from Fine-Grained Hand Motions, a Multi-camera and Deep

Learning Approach. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). New York, NY: IEEE; 2021. P. 26282634.

8. Tausif Diwan, Anirudh G., Tembhurne J.V. Object Detection Using YOLO: Challenges,

Architectural Successors, Datasets and Applications. Multimedia Tools and Applications.

2023;82(6):9243–9275.

9. Wei Liu, Anguelov D., Erhan D., Szegedy C., Reed S., Cheng-Yang Fu., et al. SSD:

Single Shot MultiBox Detector. In book: Leibe B., Matas J., Sebe N., Welling M. (eds). Computer

Vision – ECCV 2016. Cham: Springer. 2016;9905:21– 37.

10. Bharati P., Pramanik A. Deep Learning Techniques—R-CNN to Mask R-CNN: A

Survey. In book: Das A., Nayak J., Naik B., Pati S., Pelusi D. (eds). Computational Intelligence in

Pattern Recognition. New York, NY: Springer. 2020;999:657–668.

11. Bajpai R., Joshi D. MoveNet: A Deep Neural Network for Joint Profile Prediction

across Variable Walking Speeds and Slopes. IEEE Transactions on Instrumentation and

Measurement. 2021;70:1–11.

12. Ghanbari S., Ashtyani Z.P., Masouleh M.T. User Identification Based on Hand

Geometrical Biometrics Using Media-Pipe. In: Proc. 30th International Conference on Electrical

Engineering (ICEE). New York, NY: IEEE; 2022. P. 373–378.

13. Weijian Mai, Fengjie Wu, Ziqian Guo, Yuhan Xiang, Gensheng Liu, Xiaobin Chen. A

Fall Detection Alert System Based on Lightweight Openpose and Spatial-Temporal Graph

Convolution Network. Journal of Physics: Conference Series. 2021;2035:012036.

14. Szeliski R. Recognition. In book: Computer Vision: Algorithms and Applications.

London: Springer; 2011. P. 575–640.