Published March 25, 2024 | Version v1
Journal article Open

The Cauchy problem for a system of moment e- elasticity theory existence sign of solution y

  • 1. Teacher of the "General Technical Sciences" department of the International University of Asia

Description

In this work, the problem of continuation of the solution of the system of equations of the theory of elasticity in the bounded special area in the part of the boundary according to its given values and values of its tension, that is, the Cauchy problem for the system of equations of the theory of elasticity, is studied, and the criterion of the existence of a solution of such problems is presented.

In this work, the ways of constructing suitable Karleman matrix in special flat fields are studied. In contrast to the previously considered construction of the Karleman matrix, the Karleman matrix was constructed independently, and the difference between the regularized solution and the exact solution was evaluated.

Files

433-440 Homidov Farhod Faxriddinovich.pdf

Files (3.5 MB)

Name Size Download all
md5:b797f2154ff04c53cd2444897374c2b7
3.5 MB Preview Download

Additional details

References

  • 1. Koshi Masalasi Yechimini Regulyarlashtirish FF Homidov Educational Research in Universal Sciences 2 (15 SPECIAL), 205-207
  • 2. Tekislikda momentli elastiklik nazariyasi sistemasi yechimi uchun somilian-betti formulasi F.F Homidov Educational Research In Universal Sciences 2 (11), 132-136
  • 3. Elastiklik Nazariyasi Sistemasining Fundamental Yechimlari Matritsasini Qurish F.F.Homidov Educational Research In Universal Sciences 2 (16), 300-302
  • 4. Koshi Masalasini Statika Tenglamalari Sistemasi Uchun Yechish FF Homidov GOLDEN BRAIN 2 (6), 80-83
  • 5. Tekislikda Somilian–Betti Formulasi FF Homidov Educational Research in Universal Sciences 3 (1), 587-589
  • 6. Latipova, S. (2024). YUQORI SINF GEOMETRIYA MAVZUSINI O'QITISHDA YANGI PEDAGOGIK TEXNOLOGIYALAR VA METODLAR. SINKVEYN METODI, VENN DIAGRAMMASI METODLARI HAQIDA. Theoretical aspects in the formation of pedagogical sciences, 3(3), 165-173.
  • 7. Latipova, S. (2024, February). SAVOL-JAVOB METODI, BURCHAKLAR METODI, DEBAT (BAHS) METODLARI YORDAMIDA GEOMETRIYANI O'RGANISH. In Международная конференция академических наук (Vol. 3, No. 2, pp. 25-33).
  • 8. Latipova, S., & Sharipova, M. (2024). KESIK PIRAMIDA MAVZUSIDA FOYDALANILADIGAN YANGI PEDAGOGIK TEXNOLOGIYALAR. 6X6X6 METODI, BBB (BILARDIM, BILMOQCHIMAN, BILIB OLDIM) METODLARI HAQIDA. Current approaches and new research in modern sciences, 3(2), 40-48.
  • 9. Latipova, S. (2024). 10-11 SINFLARDA STEREOMETRIYA OQITISHNING ILMIY VA NAZARIY ASOSLARI. Академические исследования в современной науке, 3(6), 27-35.
  • 10. Latipova, S. (2024). HILFER HOSILASI VA UNI HISOBLASH USULLARI. Центральноазиатский журнал образования и инноваций, 3(2), 122-130.