Published March 25, 2024
| Version v1
Journal article
Open
FUNCTIONAL SPACES
- 1. Asia International University General technician Department of Sciences teacher
Description
In the article classic methods , different in appearance heat spread equation , functional to spaces circle concepts , a priori evaluation for necessary has been inequalities and theorems studied.
Files
369-376 Sharipova M new MJST.pdf
Files
(912.4 kB)
Name | Size | Download all |
---|---|---|
md5:796b2f19b551f715564bd050277b8c82
|
912.4 kB | Preview Download |
Additional details
References
- 1. Sharipova, M., & Latipova, S. (2024). TAKRORIY GRUPPALASHLAR. Development of pedagogical technologies in modern sciences, 3(3), 134-142.
- 2. Sharipova, M. (2024). TAQQOSLAMA TUSHUNCHASI VA UNING XOSSALARI. Current approaches and new research in modern sciences, 3(2), 68-78.
- 3. Sharipova, M. (2024). IKKI O'ZGARUVCHILI TENGSIZLIKLAR SISTEMASINI TAQQOSLAMALAR USULI BILAN YECHISH. Development and innovations in science, 3(2), 97-105.
- 4. Sharipova, M. (2024). BIRINCHI DARAJALI TAQQOSLAMALARNI YECHISH USULLARI. Solution of social problems in management and economy, 3(2), 60-69.
- 5. Latipova, S., & Sharipova, M. (2024). KESIK PIRAMIDA MAVZUSIDA FOYDALANILADIGAN YANGI PEDAGOGIK TEXNOLOGIYALAR. 6X6X6 METODI, BBB (BILARDIM, BILMOQCHIMAN, BILIB OLDIM) METODLARI HAQIDA. Current approaches and new research in modern sciences, 3(2), 40-48.
- 6. Sharipova, M. (2024). IKKI NOMALUMLI TENGLAMANING GEOMETRIK MANOSI. Бюллетень педагогов нового Узбекистана, 2(2), 41-51.
- 7. Sharipova, M. (2024). BIRINCHI DARAJALI TAQQOSLAMALAR SISTEMALARI. Центральноазиатский журнал академических исследований, 2(2), 11-22.
- 8. Sharipova, M., & Latipova, S. (2024). TAQQOSLAMALAR. EYLER FUNKSIYASI. Бюллетень студентов нового Узбекистана, 2(2), 23-33.
- 9. Sharipova, M., & Latipova, S. (2024). IKKI O'ZGARUVCHILI TENGLAMALAR SISTEMASI. Центральноазиатский журнал образования и инноваций, 3(2 Part 2), 93-103.
- 10. Sharipova, M. (2024). IN THE FORM OF AN UNBOUNDED PARALLELEPIPED IN THE FIELD NONLOCAL BORDERLINE CONDITIONAL LINEAR THE REVERSE IS THE CASE. Science and innovation in the education system, 3(1), 105-116.