Published March 25, 2024 | Version v1
Journal article Open

FUNCTIONAL SPACES

  • 1. Asia International University General technician Department of Sciences teacher

Description

In the article classic methods , different in appearance heat spread equation , functional to spaces circle concepts , a priori evaluation for necessary has been inequalities and theorems studied.

Files

369-376 Sharipova M new MJST.pdf

Files (912.4 kB)

Name Size Download all
md5:796b2f19b551f715564bd050277b8c82
912.4 kB Preview Download

Additional details

References

  • 1. Sharipova, M., & Latipova, S. (2024). TAKRORIY GRUPPALASHLAR. Development of pedagogical technologies in modern sciences, 3(3), 134-142.
  • 2. Sharipova, M. (2024). TAQQOSLAMA TUSHUNCHASI VA UNING XOSSALARI. Current approaches and new research in modern sciences, 3(2), 68-78.
  • 3. Sharipova, M. (2024). IKKI O'ZGARUVCHILI TENGSIZLIKLAR SISTEMASINI TAQQOSLAMALAR USULI BILAN YECHISH. Development and innovations in science, 3(2), 97-105.
  • 4. Sharipova, M. (2024). BIRINCHI DARAJALI TAQQOSLAMALARNI YECHISH USULLARI. Solution of social problems in management and economy, 3(2), 60-69.
  • 5. Latipova, S., & Sharipova, M. (2024). KESIK PIRAMIDA MAVZUSIDA FOYDALANILADIGAN YANGI PEDAGOGIK TEXNOLOGIYALAR. 6X6X6 METODI, BBB (BILARDIM, BILMOQCHIMAN, BILIB OLDIM) METODLARI HAQIDA. Current approaches and new research in modern sciences, 3(2), 40-48.
  • 6. Sharipova, M. (2024). IKKI NOMALUMLI TENGLAMANING GEOMETRIK MANOSI. Бюллетень педагогов нового Узбекистана, 2(2), 41-51.
  • 7. Sharipova, M. (2024). BIRINCHI DARAJALI TAQQOSLAMALAR SISTEMALARI. Центральноазиатский журнал академических исследований, 2(2), 11-22.
  • 8. Sharipova, M., & Latipova, S. (2024). TAQQOSLAMALAR. EYLER FUNKSIYASI. Бюллетень студентов нового Узбекистана, 2(2), 23-33.
  • 9. Sharipova, M., & Latipova, S. (2024). IKKI O'ZGARUVCHILI TENGLAMALAR SISTEMASI. Центральноазиатский журнал образования и инноваций, 3(2 Part 2), 93-103.
  • 10. Sharipova, M. (2024). IN THE FORM OF AN UNBOUNDED PARALLELEPIPED IN THE FIELD NONLOCAL BORDERLINE CONDITIONAL LINEAR THE REVERSE IS THE CASE. Science and innovation in the education system, 3(1), 105-116.