
ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889
ResearchBib Impact Factor: 8.848 / 2023

VOLUME-3, ISSUE-3

171

Development of a Hardware Module for Programming Microcontrollers Based on the

Cortex-M Architecture

Nevliudov Igor, Yevsieiev Vladyslav, Maksymova Svitlana, Klymenko Oleksandr

Department of Computer-Integrated Technologies, Automation and Robotics, Kharkiv National

University of Radio Electronics, Ukraine

Abstract:

This article analyzes modern programming interfaces of microcontrollers with Cortex-M

core architecture. The existing software and hardware tools for programming microcontrollers

were reviewed and analyzed. Methods of automating the microcontroller programming process

were also analyzed. Based on the analysis, a structural diagram of the layout was developed,

hardware and software components were selected, and a number of experiments were conducted

to evaluate the execution time of the micro controller programming script and stress test the host

server, which showed a good result.

Key words: Industry 4.0, IIoT, Microcontrollers, Cortex-M, JTAG, SWD, Automation,

Firmware.

Introduction

The development of a hardware module for microcontrollers automating the

programming is one of the most important stages in modern devices production organization

within the Industry 4.0 concept [1]. Over the past few decades, there has been a positive trend

towards the use of microcontroller control devices. Because of this, more and more devices in a

wide range of industries have microcontrollers in them that must be programmed at device

production stage. During the production of these devices, the task arises to automate the process

of downloading the software to the microcontroller as part of serial or mass production. And this

task should be solved not by classical approaches – programming each one separately, but by a

synchronous mass approach using Industrial Internet of Things (IIoT) technologies [2], which

will save production time and increase economic profitability.

Thus, the topic of this study within the framework of the development of a hardware and

software module for programming microcontrollers based on the Cortex-M architecture is

relevant and is found in different studies [3]-[14].

Related works

Microcontrollers are used in many everyday devices and will become more common as

the Internet of Things (IoT) gains momentum, there are studies and publications related to

automating the programming of microcontrollers, let's look at some of them.

Nathanael R. Weidler and others developed Return Oriented Programming (ROP), a

technique used to take over the execution of a program by causing the return address of a

function to be changed using an exploit vector, and then returning to small segments of

innocuous code located in executable memory one after another [15]. Analyzing this method, the

following conclusions can be drawn: the proposed solution makes it possible to partially and/or

fully control the Tiva TM4C123GH6PM microcontroller, which uses a Cortex-M4F processor.

Per Lindgren and others propose using Real-Time For the Masses (RTFM), a set of

languages and tools being developed to facilitate embedded software development and provide

highly efficient implementations designed for static verification [16]. It is worth noting that the

ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889
ResearchBib Impact Factor: 8.848 / 2023

VOLUME-3, ISSUE-3

172

RTFM core is an architecture designed to provide highly efficient and predictable scheduling

based on stack resource policies targeting bare metal (single-core) platforms, which is not

suitable for the solution in this research.

Mohammad Hossein Askari Hemmat et al.'s work redefines the term NuAC to support

code generation for ARM Cortex-M processors and introduces an automated SysML activity

diagram to an RTX (Keil Real-Time Operating System) code generator that uses the mapping

rules expressed in NuAC [17]. This solution is widely used for modeling and analysis of

complex systems and has become the de facto standard for software and embedded systems.

The research by Tomáš Jakubík was Of particular interest, which described a project for a

simulator of Cortex-M microprocessors. This project is based on the Unicorn Engine, which is

used to simulate the ARM core. The advantage of this project is the ability to download factory

firmware and replace microprocessor peripherals. The same firmware can be executed on a

physical board and the same firmware can be simulated. This enables rapid continuous

integration and testing in embedded software development [18]. The proposed solution inspired

the researchers to develop a hardware and software complex for programming microcontrollers

based on the Cortex-M architecture.

Development of a hardware module for programming Cortex-M

Cortex-M is a family of microprocessor cores from the ARM company, which are

designed for use in microcontrollers, ASIC (decrypts – "application special integrated circuit"),

user-programmable gate arrays (PCVM), and systems on a crystal (SNA) [19]. Cores from the

Cortex-M family are used not only as a microcontroller core, but also hidden inside an SNC,

such as power management controllers, I/O port controllers, touch screen controllers, smart

battery charge controllers, and sensor device controllers [20]. The Cortex-M processor family is

optimized for energy-efficient microcontrollers.

In Cortex-M processors, at the system design stage, there is a choice between two

protocols, Joint Test Action Group (JTAG) and Serial Wire Debug (SWD) [21]. An example of a

JTAG connection is shown in Figure 1.

Figure 1: Connecting chips using JTAG

This interface is four or five dedicated pins of the chip:

– TCK (test clock) – a clock signal, the frequency is limited to 40 MHz;

– TDI (test data input) – sequential data input, such as control commands and data;

Chip 1 Chip 2 Chip 3 TM

S TC

K

TD

I

TM

S TC

K

TD

I

TM

S TC

K

TD

I
TD

0

TD

0

TD

0

TM

S

TC

K

TD

I TD

0

ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889
ResearchBib Impact Factor: 8.848 / 2023

VOLUME-3, ISSUE-3

173

– TDO (test data output) – output for serial data from the chip;

– TMS (test mode select) – allows switching chips into debugging mode and changing

test/debugging modes;

– TRST (test reset) – allows you to reset the target chip to its initial state.

The second interface, SWD, requires only two pins to connect, which is ideal for devices

with a limited number of pins. The SWD interface requires only the TMS and TCK pins from the

JTAG interface. As a result, it is necessary to develop an experimental prototype with the

possibility of universal programming of processors of the Cortex-M family, both with the JTAG

and SWD interfaces.

At the first stage, we will develop a structural diagram of the hardware subsystem (Figure

2a) and the software subsystem (Figure 2b) of the layout for programming Cortex-M family

processors.

a) b)

Figure 2: The structure of the hardware and software programming

subsystem of Cortex-M family processors

Based on the developed structures of the hardware and software programming subsystem

of the Cortex-M family processors, we will select the hardware components. One of the

requirements for hardware modules is physical USB and Ethernet interfaces. USB (English

Universal Serial Bus) is a serial communication interface that can be roughly placed on the first

two levels of the Open Systems Interconnection (OSI) model, that is, the physical and channel

levels [22]. At the physical level, USB uses 4 wires, 2 for power (5V and Gnd), and 2 for data

transmission – a differential pair. At the channel level, a packet transmission protocol is used to

ensure the reliability of data transmission between devices. USB devices are also on the last,

seventh, application level of the OSI model, and the support of the Linux distribution OS. As a

result, Raspberry Pi Zero W [23], NanoPI NEO [24] and Orange Pi Zero LTS [25] satisfy the

requirements. It is worth noting that the NanoPI NEO only has a wired network connection,

while the Raspberry Pi Zero W only supports a wireless Wi-Fi connection and the Orange Pi

Zero LTS supports both ways to connect to the network, but it costs a lot more more than

NanoPI NEO. As a result, we will choose NanoPI NEO (Figure 3.a) and the SEGGER J-Link

microcontroller programmer (Figure 3b) as part of the development of the layout, the general of

which is presented in Figure 3.

The next step is to calculate the value of the optimal RC circuit for the signal line of the

SWD interface. A low-pass filter, also known as an RC filter, is used in data exchange lines to

Administrati

on panel

Operator

panel

Programmer control system

Hardware Interface

Host System

Interface

Programmer

Target Platform

Interface

ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889
ResearchBib Impact Factor: 8.848 / 2023

VOLUME-3, ISSUE-3

174

cut off high-frequency interference, increases resistance to electromagnetic interference and

radio interference.

a) b)

Figure 3: General view of the selected hardware modules

Since the RC filter is an aperiodic link of the first order, it is described by the following

differential equation:

)t(kx)t(y
dt

dy
T  ,

(

1)

where t - time constant.

As a result, the transition function of the link is expressed:

)t(1)e1(k)t(h T 




.
(

2)

For an RC circuit, the time constant is expressed as

RCT  , (

3)

where R – resistor resistance; С – capacitor capacity.

The time constant is inversely related to the cutoff frequency and is depicted on the

logarithmic amplitude-frequency characteristic (LAFC). Cutoff frequency c - characterizes the

bandwidth of the filter. When the input signal has a frequency lower than the cut-off frequency,

the output signal is not changed, or is not changed significantly, otherwise the filter smoothes

and changes the amplitude of the signal with a frequency higher than the cut-off frequency. The

ratio of the cutoff frequency and the time constant is expressed as:

RC

1

T

1
c

 .
(

4)

In order to preserve the clarity of the signal at non-ideal real values of the signal

frequency, for example, due to the error of the clock signal of the control device, we will add to

ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889
ResearchBib Impact Factor: 8.848 / 2023

VOLUME-3, ISSUE-3

175

the bandwidth a window of 10% of the maximum recommended frequency of the SWD

interface, that is, we will add 400 kHz to the maximum 4 MHz and get a cutoff frequency of 4, 4

MHz. Analyzing formula (4), we get that in order for the bandwidth of the first-order aperiodic

link to be 4400 kHz, the product of the resistance of the resistor and the capacity of the capacitor

must be at least . Taking, for example, a resistor with a resistance of 1.5 kΩ from the available

ratings, it will be enough to take a capacitor with a capacity of 15 nF. At the same time, this

resistor will have a current limiting function. The connection of the calculated RC filter is

presented in Figure 4.

Figure 4: Schematic image of the connection of the calculated RC filter

We connect the GND contacts of the programmer and the target system to X2 and X4.

We connect the input signal from the programmer to X1. At the X3 output, we receive a signal

that needs to be connected to the target system.

Also, it is necessary to take into account the response delays of the target platform, which

are specified in the documentation of the SWD protocol [26]. We assume that the connection to

the target platform and the data transfer are error-free. Direct data transfer depends on the

amount of data to be transferred. After analyzing the given information, we distinguish the

permanent and variable parts of data recording to flash memory. In the permanent part, we take

into account all packages of the preparatory stage. The variable part includes the first four points

of the data transfer stage, for each page of the storage device. For STM32 microcontrollers, the

most common flash memory page size is 2048 bytes, or 2 KB. To calculate the total transmission

time, we use the following formula:

datavar_pagevar_peacefulgen
TTTT  ,

(

5)

where:
peaceful

T – constant part time [c];
pagevar_

T – variable part time per page [с];
datavar_

T

– time variable part for data transfer [c].

The time for which each data packet is transmitted is calculated according to the formula:

v

b
T

package

package
 ,

(

6)

where:
package

b – the number of bits to be transmitted; v – signal frequency.

Using formula (6), we calculate the time it takes to transmit the constant part (
peaceful

T),

which is sent at the beginning of each communication session

X1

X2

X3

X4

R

C

ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889
ResearchBib Impact Factor: 8.848 / 2023

VOLUME-3, ISSUE-3

176

packagepeaceful
T3T  . (

7)

Formula for calculating the time it will take to transfer the variable part of each page (

pagevar_
T):

]
B

n
[T4T

page

packagepagevar_
 ,

(

8)

where: n – the total number of bytes in the transfer;
page

B – number of bytes per page.

To calculate the time it takes to transfer the variable part with data (
datavar_

T) for the target

system, we use the following formula

v

1

b

n8
T

package

datavar_







 
 ,

(

9)

where: n – the total number of bytes in the transfer;
package

b – the number of payload bits

in a packet; v – signal frequency.

Substitute formulas 6-9 into expression 5, simplify 6 and 7 using expression 6, and obtain

the total transfer time (
gen

T):

).
b

n8

B

n
b4b3()

v

1
(

))
v

1
(

b

n8
()

B

n

v

b
4(

v

b3

))
v

1
(

b

n8
()

В

n
T4(T3T

packagepage

packagepackage

packagepage

packagepackage

packagepage

packagepackagegen








 


















 





















 











(

10)

When using the maximum frequency of the SWD signal – 4 MHz, and 2048 bytes per

page in the memory of the target system, and also knowing that in each packet we transmit 45

bits, we can simplify formula (10) and obtain:

).
32

n8

2048

n
180135(1025,0

)
32

n8

2048

n
454453()

104

1
(T

6

6gen








 


















 


















(

11)

ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889
ResearchBib Impact Factor: 8.848 / 2023

VOLUME-3, ISSUE-3

177

Using the formula (11), it is possible to calculate the total time of writing to the flash

memory of an STM32 microcontroller with a core of the Cortex-M family, a test program with

the size of 16724 bytes, which was 1.484 ms.

To check the correctness of the performed calculations, let's assemble a test prototype of

the software and hardware module for programming microcontrollers based on the Cortex-M

architecture, which is presented in Figure 5.

Figure 5: Test prototype of a hardware module for programming microcontrollers based

on the Cortex-M architecture

Experimental studies of the developed module for programming microcontrollers

based on the Cortex-M architecture

The first test will be a software test of the speed of downloading the program to the

STM32F401CCU6 using OpenOCD [27]-[29]. Although we have calculated the approximate

programming time, but these were the conditions of an ideal hardware part that has at least 2

processor cores, one for communication with the host platform, the other for communication

with the target platform, and the write delays to the flash memory were also not taken into

account of the microcontroller itself. Also, the download time depends on the speed of the host

platform itself and the control program, in our case OpenOCD. To conduct this experiment, we

will use the Linux utility – time, which, when passing another command as an argument to it,

calculates the time it takes to execute this command. The test results are shown in Figure 6.

ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889
ResearchBib Impact Factor: 8.848 / 2023

VOLUME-3, ISSUE-3

178

Figure 6: The result of the microcontroller programming script execution time evaluation

As you can see, the result of STM32F401CCU6 microcontroller programming script

execution time evaluating showed the following results: real execution time (the entire, total time

when the command was active, from the beginning to the end of its execution) – 4.912s; user

(the time the called command was executed outside the OS core, in user space) – 0.226s; sys (the

time the called command was executed in the OS kernel, in the system space) – 0.186c.

Also, we will conduct an experiment with a stress load, the purpose of which is to check

whether our system will maintain the expected response speed during a significant increase in

the load on the host server. Since the system was designed for use in a small company, we will

determine that the maximum level of simultaneous requests is 10. The test will be implemented

using a script written in Python using the requests, time, concurrent and matplotlib libraries to

display the results. We received the response time graph for the total number of 1000 requests,

which is shown in Figure 7.

Figure 7: Host-server stress testing result

Analyzing the results of the first experiment, knowing that the complete cycle of script

execution: reading the identifier, programming, writing to the history of the unique identification

number takes almost 5 s, it is necessary to optimize this process, one of the solutions is to use

ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889
ResearchBib Impact Factor: 8.848 / 2023

VOLUME-3, ISSUE-3

179

multithreading and using 2 more available, but not soldered USB on the NanoPI NEO board to

connect two hardware programmers to the host platform. Evaluating the result of the second

experiment, it can be confirmed that the system maintains stability and the speed of returning

responses to requests.

Conclusion

This article analyzes modern programming interfaces of microcontrollers with Cortex-M

core architecture. The existing software and hardware tools for programming microcontrollers

were reviewed and analyzed. Methods of automating the microcontroller programming process

were also analyzed. Based on the analysis, a structural diagram of the prototype was developed.

Also, hardware and software components were selected that correspond to the technical task and

have the ability to preserve functionality when the number of users increases, on the basis of

which the layout of the microcontroller programming system based on the Cortex-M architecture

was assembled. Experimental studies of the speed of programming the microcontroller by the

test program and the stability of the host system to an increase in the flow of requests from users

were conducted.

As a result, an automated microcontroller programming system based on the ARM

Cortex-M family of processors was implemented.

In the future, it is planned to expand the functionality of the software module - implement

firmware and user statistics, hardware subsystem - expand the list of supported microcontrollers.

References:

1. Mijailović, Đorđe& et al. (2021). A Cloud-Based with Microcontroller Platforms

System Designed to Educate Students within Digitalization and the Industry 4.0 Paradigm.

Sustainability, 13(22), 12396.

2. Ala-Laurinaho, Riku, & et al. (2020). Open Sensor Manager for IIoT. Journal of

Sensor and Actuator Networks, 9, 2(30).

3. Attar, H., & et al.. (2022). Zoomorphic mobile robot development for vertical

movement based on the geometrical family caterpillar. Computational Intelligence and

Neuroscience, 2022.

4. Tvoroshenko, I., & et al.. (2020). Modification of models intensive development

ontologies by fuzzy logic. International Journal of Emerging Trends in Engineering Research,

8(3), 939-944.

5. Al-Sherrawi, M. H., & et al.. (2018). Corrosion as a source of destruction in

construction. International Journal of Civil Engineering and Technology, 9(5), 306-314.

6. Dadkhah, M., & et al.. (2019). Methodology of wavelet analysis in research of

dynamics of phishing attacks. International Journal of Advanced Intelligence Paradigms, 12(3-4),

220-238.

7. Attar, H., & et al.. (2022). Control System Development and Implementation of a

CNC Laser Engraver for Environmental Use with Remote Imaging. Computational Intelligence

and Neuroscience, 2022.

8. Abu-Jassar, A. T., & et al.. (2022). Electronic user authentication key for access to

HMI/SCADA via unsecured internet networks. Computational Intelligence and Neuroscience,

2022.

ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889
ResearchBib Impact Factor: 8.848 / 2023

VOLUME-3, ISSUE-3

180

9. Nevliudov, I., & et al.. (2020). Development of a cyber design modeling

declarative Language for cyber physical production systems. J. Math. Comput. Sci., 11(1), 520-

542.

10. Baker, J. H., & et al.. (2021). Some interesting features of semantic model in

Robotic Science. SSRG International Journal of Engineering Trends and Technology, 69(7), 38-

44.

11. Abu-Jassar, A. T., & et al.. (2021). Some Features of Classifiers Implementation

for Object Recognition in Specialized Computer systems. TEM Journal: Technology, Education,

Management, Informatics, 10(4), 1645-1654.

12. Nevliudov, I., & et al.. (2020). Method of Algorithms for Cyber-Physical

Production Systems Functioning Synthesis. International Journal of Emerging Trends in

Engineering Research, 8(10), 7465-7473.

13. Al-Sharo, Y. M., & et al.. (2021). Neural Networks As A Tool For Pattern

Recognition of Fasteners. International Journal of Engineering Trends and Technology, 69(10),

151-160.

14. Sotnik, S., & et al.. (2020). Some features of route planning as the basis in a

mobile robot. International Journal of Emerging Trends in Engineering Research, 8(5), 2074-

2079.

15. Nathanael R. Weidler, & et al.. (2017). Return-Oriented Programming on a

Cortex-M Processor. In 2017 IEEE Trustcom/BigDataSE/ICESS. Sydney, NSW, Australia.

16. Per Lindgren, & et al. (2016). Abstract timers and their implementation onto the

ARM Cortex-M family of MCUs. ACM SIGBED Review, 13(1), 48-53.

17. Mohammad Hossein Askari Hemmat & et al. (2016). owards code generation for

ARM Cortex-M MCUs from SysML activity diagrams. In 2016 IEEE International Symposium

on Circuits and Systems (ISCAS). Conference Location: Montreal, QC, Canada.

18. Tomáš Jakubík. (2020). Cortex-M Simulator. In 2020 International Conference on

Applied Electronics (AE). Conference Location: Pilsen, Czech Republic.

19. Lucan Orășan, & et al.. (2022). A Brief Review of Deep Neural Network

Implementations for ARM Cortex-M Processor. Electronics, 11(16), 2545.

20. Amar A. Rasheed, & et al.. (2021). Clock Gating-Assisted Malware (CGAM):

Leveraging Clock Gating On ARM Cortex M For Attacking Subsystems Availability. In 2021 9th

International Symposium on Digital Forensics and Security (ISDFS), Conference Location:

Elazig, Turkey.

21. Trevor Martin (2023). The Designer's Guide to the Cortex-M Processor Family.

Elseveir Ltd, 604.

22. Amin, M.S., Rahman, S. (2023). An Introduction of Open System Interconnection

(OSI) Model and its Architecture. Preprints 2023, 2023051858.

23. Gede Bagus Wirawan, & et al.. (2023). IoT based anti covid visitor management

system using Raspberry pi zero W. AIP Conf. Proc. 2482, 100010.

24. Ortega, Alberto, & et al.. (2023). Design of a Standard and Programmatically

Accessible Interface for Smart Meters to Allow Monitoring Automation of the Energy Consumed

by the Execution of Computer Software. Sustainability, 15(3), 1900.

25. Liu, Jian, & et al.. (2022). Contour Resampling-Based Garlic Clove Bud

Orientation Recognition for High-Speed Precision Seeding. Agriculture, 12(9), 1334.

ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889
ResearchBib Impact Factor: 8.848 / 2023

VOLUME-3, ISSUE-3

181

26. Banik, S., & Zimmer, V. (2022). System Firmware Debugging. In: Firmware

Development. Apress, Berkeley, CA.

27. David Llanio Reyes, & et al.. (2023). Anomaly Detection in Embedded Devices

Through Hardware Introspection. In 2023 Silicon Valley Cybersecurity Conference (SVCC).

Conference Location: San Jose, CA, USA.

28. Igor Nevliudov, & et al.. (2021). Automation of Mathematical Modeling of

Physical and Technological Processes in the Electronic Devices Manufacture. Proceedings of the

XIІ International Scientific Conference «Functional Basis of Nanoelectronics» – Odessa,

September 20-24, 2021, 74-77.

29. Igor Nevliudov, & et al.. (2022). The Use of Neural Networks for the

Technological Objects Recognition Tasks in Computer-Integrated Manufacturing. 2022 IEEE 4th

International Conference on Modern Electrical and Energy System (MEES), Kremenchuk,

Ukraine, 2022, 1-5.

