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 Abstract: This article presents a comparative analysis of methods for predicting object 

movement trajectories in a collaborative robots-manipulator working area. The following 

approaches are evaluated: linear method, Kalman filter, extended Kalman filter (EKF), behavioral 

models and LSTM models. A mathematical description of each method is accompanied by an 

analysis of their advantages and disadvantages, including prediction accuracy, implementation 

complexity, and resource requirements. The results show that the choice of the method depends 

on the specifics of the task and the robot's operating conditions, which allows for an optimal 

combination of efficiency and computational costs. 

Key words: Industry 5.0, Collaborative Robot, Work Area, Computer Vision, Trajectory 
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INTRODUCTION 

In the modern conditions of the Industry 5.0development, where the emphasis is on the 

integration of advanced technologies to create more adaptive and efficient production systems, the 

importance of accurately predicting the trajectories of the movement of objects in a collaborative 

robots-manipulator working area cannot be overestimated [1]-[12]. Robotic manipulators working 

in close contact with people and performing complex tasks in dynamic environments require high 

accuracy in predicting the movements of objects to ensure the safety and efficiency of production 

processes [13]-[27]. Various methods and approaches can be used for analysis here [28]-[44]. 

Choosing the appropriate trajectory prediction method is critical to achieving optimal results, as 

different methods have different properties, advantages, and limitations. In this context, 

conducting a comparative analysis of forecasting methods, such as the linear method, the Kalman 

filter, the extended Kalman filter (EKF), behavioral models and LSTM models, is necessary to 

determine the most effective approaches to solving tasks within the concepts of Industry 5.0. Each 

of these methods has unique features that can affect the accuracy of forecasting and the efficiency 

of manipulator robots in various scenarios. 

The analysis of these methods allows you to find out which approach best corresponds to 

specific working conditions, taking into account the dynamism of the environment, the complexity 

of the interaction of objects and the requirements for computing resources. This allows for the 

creation of more adaptive, accurate and safe systems that meet the modern requirements of 

industrial and research applications. Thus, this article is aimed at deepening the understanding and 
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selection of optimal forecasting methods for increasing efficiency and safety within the framework 

of Industry 5.0. 

Related works 

 Collaborative robots are currently finding more and more application. Naturally, when a 

person and a robot work together, the task of detecting an object in the robot's work area and 

tracking this object becomes extremely relevant. This leads to the task of predicting the possible 

position of the object. Many works are devoted to solving this problem. Let's look at several recent 

scientific works. 

Marchetti, F., and co-authors in [45] propose MANTRA, a model that exploits memory 

augmented networks to effectively predict multiple trajectories of other agents, observed from an 

egocentric perspective. Their model stores observations in memory and uses trained controllers to 

write meaningful pattern encodings and read trajectories that are most likely to occur in future. 

A novel two-stage motion prediction framework, Trajectory Proposal Network (TPNet) is 

presented in [46]. TPNet first generates a candidate set of future trajectories as hypothesis 

proposals, and then makes the final predictions by classifying and refining the proposals which 

meets the physical constraints. By steering the proposal generation process, safe and multimodal 

predictions are realized. 

Researchers in [47] present Goal-GAN, an interpretable and end-to-end trainable model 

for human trajectory prediction. They leverage information about the past trajectory and visual 

context of the scene to estimate a multi-modal probability distribution over the possible goal 

positions, which is used to sample a potential goal during the inference. 

Quan, R., & et al. in [48] propose a novel Long Short-Term Memory (LSTM), namely, to 

incorporate multiple sources of information from pedestrians and vehicles adaptively. Different 

from LSTM, their one considers mutual interactions and explores intrinsic relations among 

multiple cues. 

The paper [49] introduces a novel motion-based tracker, MotionTrack, centered around a 

learnable motion predictor that relies solely on object trajectory information. This predictor 

comprehensively integrates two levels of granularity in motion features to enhance the modeling 

of temporal dynamics and facilitate precise future motion prediction for individual objects. 

Scientists in [50] propose their own method to predict objects moving. Their method 

predicts both current and past locations in the first stage, so that each object can be linked across 

frames and the comprehensive spatio-temporal information can be captured in the second stage. 

So, we see that the task of predicting the movement of various objects occupies the minds 

of many scientists. Further in this article we will consider the most common ways of solving this 

problem and present their comparative characteristics. 

Mathematical Representation of Methods for Predicting the Trajectory of Objects in 

a collaborative robots-manipulator workspace 

Trajectory prediction is a key component in the development of a method for identifying 

and tracking objects in the workspace of a collaborative robot, especially in the context of cyber-

physical manufacturing systems. Collaborative robots work in a dynamic environment where there 

are moving objects, including people, whose actions can be unpredictable. To ensure the safety 

and efficiency of interaction between a robot and a person, it is necessary not only to accurately 

determine its current position, but also to predict possible trajectories of its movement. This allows 

the robot to adapt its actions in advance, minimizing the risks of collisions or other dangerous 
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situations. Trajectory prediction also helps optimize workflows by allowing workers to effectively 

plan their actions in real time. The use of this method increases the level of robot autonomy, which 

is an important aspect for the integration of such systems into modern production processes within 

the framework of the concept of Industry 5.0. 

There are several basic methods of trajectory prediction that are widely used in computer 

vision tasks: 

 - linear methods, based on the assumption that the movement of the object is linear. They 

are easy to implement and fast, but have low accuracy for complex or variable trajectories. 

- Kalman filter for linear systems, which allows to predict the trajectory taking into account 

noise and uncertainty. It works well for smooth trajectories, but has limited ability to adapt in 

complex dynamic environments. 

- the extended Kalman filter (EKF), is an extension of the standard Kalman filter for 

nonlinear systems. It provides better accuracy in cases with complex trajectories, but requires more 

computing power. 

- behavioral models, use previous data about the movements of objects to build behavioral 

models. They provide high accuracy, but depend on the availability of a large amount of training 

data. 

- recurrent neural networks (RNN) and Long Short-Term Memory (LSTM), these models 

can take into account long-term dependencies in the data and are well suited for predicting complex 

trajectories. However, they require significant computing resources. 

Let us analyze each method of predicting the trajectories of moving objects in a 

collaborative robots-manipulator working area and identify their advantages and disadvantages. 

Linear methods are based on the assumption that the change in the position of the object in 

the working area of the robot can be described by linear functions. These methods are easy to 

implement and understand, but they have limitations when modeling nonlinear processes. 

The simplest linear method is to use linear regression equations to predict an object's 

position based on its previous positions.  

y(t)= β0+β1x1(t)+ β2x2(t)+…+ βnxn(t)+e(t)  (1) 

y(t) - the predicted position of the object at the moment of time t; 

x1(t), x2(t), …, xn(t) - values of independent variables (previous positions of the object);  

β0, β1,…, βn - coefficients of the model;  

e(t) - model error. 

Linear forecasting methods for moving objects in a collaborative robot-manipulator 

working area are simple to implement and fast, which makes them attractive for tasks with low 

computational complexity. They are well suited for systems where object movements are linear or 

can be adequately approximated by linear models. However, their main disadvantage is limited 

accuracy in cases where object movements are non-linear, which is often observed in real 

production conditions. Linear methods may also not take into account complex dynamics or 

interactions between objects, which can lead to errors in prediction and reduce the efficiency of 

the robots-manipulator. 

The Kalman filter is an optimal recursive filter that estimates the state of an object in noisy 

systems. It is able to predict the next state of the object based on previous observations, taking into 

account the existing noise in the measurements. From the point of view of mathematical 
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description, this method includes two main phases: prediction and correction, which are 

represented in the following expressions: 

- forecasting phase: 
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1kkx   - predicted state; 

P(k|k-1) - predicted error covariance;  

Kk - matrix of Kalman coefficients;  

zk - measured value;  

A - state transition matrix;  

B – control matrix;  

uk - vector of controlling influences;  

H - observation matrix;  

Q - process noise covariance;  

R - measurement noise covariance. 

The Kalman filter is an effective tool for predicting the movement of objects in a 

collaborative robot-manipulator working area, as it provides an optimal assessment of the system 

state in conditions of noise and uncertainties. It performs well in real time, adapting to dynamic 

changes in the environment, which is important for accurate trajectory prediction. However, the 

main disadvantages are its limitations in application to linear systems and dependence on the 

correctness of process and measurement models. In conditions of significant nonlinearities or 

inaccuracies in modeling, the effectiveness of the Kalman filter may decrease, which leads to less 

accurate prediction of movement trajectories. 

The extended Kalman filter (EKF) is a variant of the standard Kalman filter, but applies to 

nonlinear systems. It linearizes nonlinear equations of state and measurements by computing their 

derivatives. The EKF also has two main phases: prediction and correction, which are presented 

below: 

- forecasting phase: 
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f() - nonlinear state transition function;  

h()-nonlinear observation function;  

Fk - matrix of derivatives (Jacobian) of the state transition function;  

Hk - matrix of derivatives (Jacobian) of the observation function. 

The Extended Kalman Filter (EKF) is effective for predicting the movement of objects in 

a collaborative robots-manipulator working area, as it allows for the processing of nonlinear 

systems, which is common in such tasks. The EKF provides more accurate state estimation 

compared to the standard Kalman filter due to linearization around the current state, which allows 

it to adapt to complex dynamic changes. However, this approach has drawbacks: it requires large 

computational resources and can be sensitive to initial conditions and errors in the model, which 

can lead to accumulation of errors and inaccuracies in predictions under significant nonlinearities 

or strong perturbations. 

Behavioral forecasting models are based on the analysis of behavioral patterns of the 

object. They can be based on rules, expert systems or machine learning. These models are often 

used to predict the movement of objects interacting with the environment or other objects. 

Behavioral models can use different mathematical approaches, including decision rules, finite state 

machines, or neural networks. For example, a neural network can be used to train a behavior model 

based on previous data: 

 

y(t)=σ(W*x(t)+b) (12) 

 

y(t) - predicted position; 

x(t) - input data (previous position, speed, direction); 

W - weighting coefficients; 

b – shift; 

σ() - activation function. 

Behavioral prediction models have the advantage of being able to take into account the 

complex interaction of objects and context, which allows the operation of the manipulator to adapt 

to various scenarios in the work area. They work effectively in environments with unpredictable 

or dynamic changes, which is important for tasks where the behavior of objects may differ 

significantly from standard trajectories. However, the main drawback is the dependence on high-

quality training data and the high complexity of creating an adequate model, which can require 
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significant resources for training. In addition, behavioral models may be less accurate when 

predicting new or rare scenarios that were not considered during training. 

Long Short-Term Memory (LSTM) is a type of recurrent neural networks (RNN) specially 

designed to work with sequential data and solve the problem of "forgetting" long-term 

dependencies. LSTMs are used to predict the movement of objects when it is important to consider 

long-term dynamics. LSTM has special blocks consisting of three main gates: input, forget and 

output, which regulate the flow of information. The mathematical representation of the blocks is 

given below: 

- input gate: 

 

it=σ(Wi*[ht-1,xt]+bi) (13) 

 

- forgetting gate: 

 

fft=σ(Wff*[ht(t-1),xtt]+bff) (14) 

 

- candidate of new states: 

 

C1t=HTan(WcC*[h1(t-1),xtt]+bcCt) (15) 

 

- state update: 

 

ttttt CiCfС
~

** 1    (16) 

 

- output gate: 

 

o1t=σ(Woo*[h1(t-1),x1t]+boo) (17) 

 

- hidden state update: 

 

ht=ot*HTan(Ct) (18) 

 

xt - input vector at a time t;  

ht - hidden state at a time t;  

Ct – memory state at a time t; 

Wi, Wf, Wc, Wo - weight matrices for the corresponding gates;  

bi, bf, bc, bo - shift for the corresponding gate;  

σ() - sigmoid function;  

HTan - hyperbolic tangent.  

LSTM prediction models have the advantage of being able to efficiently process sequential 

data and take into account long-term dependencies, which makes them ideal for predicting 

complex and non-linear object trajectories in a collaborative robots-manipulator working area. 

They work well in situations with changing conditions where historical data must be taken into 

account for accurate forecasting. However, LSTM models require large computing resources and 
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a large amount of training data to achieve high accuracy, which can be a challenge in real-world 

settings. In addition, their complexity can lead to long training and tuning times, as well as the risk 

of overtraining with limited data. 

Based on the analysis, we will build a table comparing the advantages and disadvantages 

of each method: linear method, Kalman filter, EKF, behavioral models and LSTM models, the 

comparison results are given in Table 1. 

 

Table 1. Comparison of the advantages and disadvantages of the methods of predicting the 

trajectories of the objects movement in a collaborative robots-manipulator working area 

Method Advantages Disadvantages 

Linear 

methods 

Simple to implement, fast to implement, 

suitable for linear or almost linear 

systems. 

Limited accuracy in non-linear 

movements, do not take into 

account complex dynamics, may 

cause errors. 

Kalman filter Effective in real time, works well with 

noise and uncertainties, adapts to 

changes. 

Only suitable for linear systems, 

depends on the accuracy of the 

process model and measurements. 

Extended 

Kalman filter 

(EKF) 

Works with nonlinear systems, more 

accurate than the usual Kalman filter. 

Requires large computing 

resources, sensitive to initial 

conditions, possible accumulation 

of errors. 

Behavioral 

models 

They take into account the complex 

interaction of objects, adapt to various 

scenarios, and are effective in dynamic 

environments. 

Dependence on qualitative data, 

complexity of modeling, less 

accurate in new or rare situations. 

LSTM 

models 

Take into account long-term 

dependencies, are effective for non-linear 

and complex trajectories, work well with 

sequential data. 

Requires large resources and data 

for training, difficult to configure, 

risk of overtraining. 

CONCLUSION 

In this article, a comparative analysis of methods for predicting object movement 

trajectories in a collaborative robots-manipulator working area was conducted, including linear 

methods, Kalman filter, extended Kalman filter (EKF), behavioral models, and LSTM models. 

Each of these methods has its own advantages and disadvantages, which determine their 

effectiveness in specific conditions. Linear methods are simple to implement and fast, but are 

limited in accuracy when dealing with nonlinear systems. The Kalman filter shows high efficiency 

in linear systems and in noisy conditions, but requires modeling accuracy, which can be 

problematic in cases with complex systems. The EKF is a powerful tool for dealing with nonlinear 

systems, but it depends on the initial conditions and can be resource intensive. Behavioral models 

provide flexibility and the ability to adapt to a variety of scenarios, but they require high-quality 

data for training and are complex to develop. LSTM models, on the other hand, can efficiently 

handle sequential data and account for long-term dependencies, making them a powerful tool for 

predicting complex trajectories, although they require significant computing resources and training 

time. In conclusion, the choice of a specific method for predicting trajectories in a collaborative 
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robot working area depends on the specifics of the task, the complexity of object dynamics, and 

available resources. Careful analysis of these factors is key to achieving the optimal balance 

between accuracy and efficiency in forecasting. 
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