Published July 7, 2024 | Version v1
Journal article Open

Medical Image Processing and Deep Learning Models and Algorithms. (For Eye Diseases)

  • 1. Urgench branch of Tashkent information technology university 2nd year magistry student
  • 2. Scientific supervisor Kadamboyevich Department of Computer Engineering Urganch Branch of Tashkent University of Information Technologies named after Muhammad al-Khwarizmi Urgench Uzbekiston

Description

Medical image processing and deep learning models are revolutionizing the field of ophthalmology. These techniques enhance the accuracy and efficiency of diagnosing eye diseases by analyzing vast amounts of imaging data. This paper reviews the latest advancements in medical image processing and deep learning algorithms specifically applied to eye diseases, highlighting their applications, benefits, and challenges.

Files

55-63 Kuljanova Shukurjon Zaribovna.pdf

Files (3.0 MB)

Name Size Download all
md5:e5d72bdf66a0d5aa1aa222e7d3a56ca4
3.0 MB Preview Download

Additional details

References

  • 1. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402-2410.
  • 2. Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., ... & Wong, T. Y. (2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2), 167-175.
  • 3. De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., ... & Hassabis, D. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature medicine, 24(9), 1342-1350.
  • 4. Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S., Liang, H., Baxter, S. L., ... & Dong, J. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122-1131.
  • 5. Lee, C. S., Tyring, A. J., Deruyter, N. P., Wu, Y., & Rokem, A. (2017). Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomedical optics express, 8(7), 3440-3448.
  • 6. Abramoff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Medicine, 1(1), 39.
  • 7. Leibig, C., Allken, V., Berens, P., Wahl, S., & Schubert, B. (2016). Leveraging uncertainty information from deep neural networks for disease detection. Scientific Reports, 7, 17816.
  • 8. Bellemo, V., Lim, Z. W., Lim, G., Nguyen, Q. D., Xie, Y., Yip, M. Y. T., ... & Ting, D. S. W. (2019). Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. The Lancet Digital Health, 1(1), e35-e44.
  • 9. Gargeya, R., & Leng, T. (2017). Automated identification of diabetic retinopathy using deep learning. Ophthalmology, 124(7), 962-969.
  • 10. Yan, Q., Weeks, D. E., Xin, H., Swaroop, A., Chew, E. Y., Huang, H., & Chakravarti, A. (2018). Deep-learning based prediction of late age-related macular degeneration progression. Nature Machine Intelligence, 2(3), 141-150.