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ANNOTATION. 

D e card coordinate system be included in the plane . In this case, each point M on the 

plane is completely determined by a pair of numbers ( x , y ) called its coordinates d and written 

as M( x , y ), as mentioned earlier . Each geometric object in the plane (line, geometric figure, 

etc. ) can be viewed as a collection of points . In this case, the point M must satisfy a certain 

condition for it to belong to a line . 

In plane analytic geometry, properties of lines are studied algebraically through their 

equations. The simplest and most common line is a straight line. You can see general, slope, 

section, normal, canonical and parametric equations of straight lines in the plane . These equations 

will be used later in solving various straight line problems. 

        DEFINITION 1: If the equation (*) is satisfied only by the coordinates of the points 

M( x , y ) belonging to a line L in the t e region , it is called the equation of this line d e b. 

       If the condition F ( x 0 , u 0 ) = 0 is fulfilled for the point M 0 ( x 0 , u 0 ) (the equation is 

satisfied), the point M 0 belongs to the line defined by this equation, otherwise it does not belong. 

Thus, a line in a plane is completely determined by its equation. But not every equation necessarily 

represents a line. For example, the equation x 2 + y 4 =0 is satisfied by only one O( 0,0) point 

coordinates, and therefore this equation does not represent a line. Also, the equation x 2 + y 2 +1=0 

is not satisfied by the coordinates of any point in the plane, and it represents the empty set. 

        DEFINITION 2:  The mathematical science that studies lines in a plane through 

their equations is called analytical geometry . 

The founder of analytical geometry is the Farang mathematician and philosopher René 

Décart . Through the coordinate system introduced by him, a one-value correspondence was 

established between the point M, which is a geometric concept, and the pair of numbers ( x , y ) , 

which is an algebraic concept . This created a link between the two branches of mathematics, 

algebra and geometry. As a result, it was possible to easily solve a number of geometric problems 

in the plane algebraically and, conversely, a number of algebraic problems by geometric methods 

. 

 Analytical geometry in the plane mainly deals with two issues : 

 Finding the equation of the given line and analytically studying it based on this 

equation . 

 Determine the line that fits the given equation. 

Problem: Find the equation of a circle with radius R centered at M ( a , b ). 

     Solution: Let N( x , y ) be an arbitrary point on this circle. According to the definition 

of a circle familiar to us from school, it consists of a set of points satisfying the condition |MN|=R 

(ge om e trical locus). Then, according to the formula of the distance between two points, we create 

this equation of a circle : 

. (1) 

mailto:slatipova543@gmail.com


ISSN: 2582-4686 SJIF 2021-3.261,SJIF 2022-2.889, 
2024-6.875  ResearchBib IF: 8.848 / 2024 

 
 
 

VOLUME-4, ISSUE-3 

772 

For example, a circle with center at M( 2,3) and radius R=5 has equation ( x –2) 2 + ( u –

3) 2 = 25. From here it follows that the point N( 5,7) belongs to this circle, because (5–2) 2 + (7–3) 2 

= 25. The point K( 2,6) does not lie on the circle, because its coordinates do not satisfy the equation 

of the circle: 

(2–2) 2 + (6–3) 2 = 9 ¹ 25. 

1. The general equation of a straight line in a plane.  A straight line is one of the 

elementary concepts of geometry, which is taken without definition. 

      T E OR E MA: Any L in the plane equation of a straight line 

A x+ B y +C= 0 , A 2 +B 2 ≠0 (2) 

in the form , that is, it consists of an equation of order I. Conversely, any I-order equation 

(2) represents a straight line in the plane . 

      Proof: First, we show that the first part of the theorem is valid. For this, the given L 

of the plane we get an arbitrary point M 0 that does not belong to a straight line (see Fig. 19). 

 
From this point, we draw a perpendicular to the straight line L and mark their point of 

intersection as M 1 ( x 1 , y 1 ). Let's enter the vector n ≠0 with the beginning M 0 and the end M 1 and take 

its coordinates as A and B, that is, n = (A,B). Now we take an arbitrary point M ( x , y ) lying on the 

straight line L and m = ( x – x 1 , y – y 1 ) we look at the vector. Here M( x , y ) is a point L if and 

only if n and m vectors are orthogonal. Using the expression of the condition of orthogonality of 

vectors in coordinates (Chapter III , § 2), we get the following results: 

n·m = A( x – x 1 )+B( y – y 1 )=0 A x +B y+ (–A x 1 – B y 1 ) =0 A x +B y+ C=0. 

Since n ≠ 0 , | n | It follows that 2 =A 2 + B 2 ≠0. 

Now we prove the second part of the theorem, that is, we show that equation (2) represents 

a straight line. To do this, we write equation (2) in the following form : 

A x +B y +C= A x +B( y +C/B)=0 Þ A ( x – 0)+ V ( u – ( – S / V ))=0 Þ A( x – x 1 ) +B( 

y – y 1 )=0. 

Here x 1 =0, y 1 = – S / V designation was introduced. If we look at the vectors n = ( A , 

V ) and m =( x – x 1 , y – y 1 ) , it follows from the last equality that n·m = 0, that is, these vectors 

are orthogonal. The vertices M( x , y ) of all vectors m =( x – x 1 , y – y 1 ) orthogonal to the vector 

n = ( A , V ) lie on one straight line. So, equation (2) represents a straight line passing through the 

point M 1 ( 0 , – S / V ) and perpendicular to the vector n = ( A , V ) . 

       DEFINITION 3: Equation (2) is called the general equation of a straight line in a 

plane. In it, A and B are called coefficients , and C is called a free term . 
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n =( A,B) ≠0 defined by equation (2) is perpendicular to the straight line L represented 

by this equation and is called its normal vector . 

For example, the equation 3 x+ 4 y– 8=0 represents a straight line passing through the 

point M 1 (0,2) and perpendicular to the vector n = ( 3,4 ) . 

Thus, we have established that any equation of a straight line is of the form (2) 

(Fundamental Problem I of analytic geometry), and conversely that any equation (2) represents a 

straight line (Fundamental Problem I of analytic geometry We have proved the main problem II). 

Now we analyze some special cases of the general equation (2) of the straight line in the 

plane and draw conclusions. 

2 . The equation of a straight line in a plane with the slope coefficient. The given 

straight line L makes an angle a ( a ≠90 0 ) with the OX axis (that is, if the OX axis turns 

counterclockwise to an angle a , it is parallel to the straight line L will be ) and let it be known that 

M 0 on the OY axis passes through the point (0, b ) (see Fig. 20). 

 
arbitrary point M( x , y ) lying on this straight line satisfy. From the drawing 

OM 0 =TN= b , OT=M 0 N= x , TM= y ,  

we see that Here D M 0 MN is a right triangle, from which we get the following result: 

 
By noting tg a = k in the last equation , we find that under the given conditions , the 

equation of a straight line L has the following form: 

y=kx+b (3) 

       DEFINITION 4: (3) is called the equation of the straight line in the plane with the 

angle coefficient . Then k= tg a is the angle coefficient of the straight line , and b is called the 

starting ordinate . 

     Note: If  if , then a =90 0 and k= tg a will have no meaning. In this case, the 

equation of the vertical straight line L is x = a . 
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If L If the general equation of a straight line is given by A x+ B y +C=0 (B≠0), then it is 

transferred to its angle coefficient equation as follows: 

 
we find the slope equation of a straight line whose general equation is 4 x –6 y +3=0 : 

 
          3. The equation of a straight line in a plane in sections. Let it be known that the 

straight line L, which does not pass through the coordinate origin, intersects the coordinate axes 

OX and OY at the points M 1 ( a ,0) and M 2 (0, b ) , respectively . In this case, we find what the 

equation of L looks like . 

To find the equation of this straight line M 1 ( a ,0) v a We use the fact that the points M 

2 (0, b ) lie in it. The coordinates of these points L satisfies the general equation of a straight line 

A x + V u + S =0, i.e. 

 

Here C≠0 because L a straight line does not pass through the coordinate origin. 

Therefore, we get the following result from the general equation:

 

So, L the sought equation of a straight line 

                                           (4) 

appear . In this | a | and | b | L represents the lengths of the section that separates the 

considered straight line from the coordinate axes OX and OY, respectively. Therefore, the 

following definition is introduced. 

     DEFINITION 5: (4 ) is called the equation of a straight line in sections . 

If L does not pass through the coordinate origin If a straight line is given by the general 

equation A x + V u + S =0 (A≠0, B≠0, C≠0), then to get to its cross section equation, multiply 

the general equation by (–C) divided into: 

. 

For example, we find the equation of the straight line in sections with the general equation 

2 x +3 y– 6= 0 : 
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Therefore, this straight line intersects the axes OX and OY at the points M 1 (3,0) and M 

2 (0,2). Using this L a straight line can be easily constructed as follows (see Figure 21): 

 

4. Canonical equation of a straight line in a plane. Let there be a point M 0 ( x 0 , u 0 ) 

of the straight line L in the plane and a vector a = m i + n j =( m , n )≠ 0 v ector parallel to it. In 

this case, the given point M 0 is v a a v e ctor L completely defines a straight line. Therefore, a is 

the direction vector of the straight line , and M 0 is called its initial point . Based on this information, 

L we define the equation of a straight line. For this, we take an arbitrary point M( x , y ) lying on 

the given straight line L. By connecting this point with the starting point M 0 , we form the vector 

x =( x – x 0 , u – u 0 ) v e ctor. According to the condition x v a a v e ctors are colline e ar . According 

to the condition of collinearity of vectors (see Chapter IV, § 3 , formula (5)), their corresponding 

coordinates are proportional: 

                                          (7) 

    Note: If the direction vector of a straight line L =( m , n ) m = 0 ( L -horizontal straight 

line ) or n = 0 ( L -vertical straight line), then the pictures of the corresponding fractions in the 

equation (7) are taken as zero, and the equation of the straight line L is written in the form y = y 0 

or x = x 0 . 

         DEFINITION 7: (7) is called the canonical expression of a straight line in a plane 

. 

The word "canonical" means simple, compact. If the straight line L is given by the general 

equation A x+ B y+ C=0, then the vector a =( B,–A) as the direction vector, the initial M 0 ( x 0 , 

u 0 ), and as a point, one can take an arbitrary point whose coordinates are A x 0 +B u 0 =–C, satisfying 

the condition. For example, x 0 = 0 , u 0 =–C/B or x 0 =–C/A, u 0 =0 can be taken. 

Explanation: If the straight line L is perpendicular to the axis OX or OY, that is, the 

straight line is perpendicular to the vector i or j, then n = 0 or m = 0 . In this case, the image of the 

corresponding fraction in equation (7) is taken to be equal to zero, and the canonical equation of 

the straight line L is of the form x=x 0 or y=y 0 , respectively . 
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5. Parametric equation of a straight line in a plane. The values of the fractions in the 

canonical equation of the straight line (7) M( x , y ) change when the point moves along the straight 

line and can be equal to an arbitrary real number t . Therefore, this equation can be written as: 

(8) 

          DEFINITION 8: t is a parameter in the system (8) , and the system itself is called 

a parametric equation of a straight line in the plane . 

         If the straight line is given by the general equation A x+ B y+ C=0 (A≠0, B≠0), we 

take x = t to pass to its parametric equation. From this we arrive at the following parametric 

equation of a straight line: 

. 

    Note: If A=0 or B=0 in the general equation , (8) is a parametric equation 

 

is written in the form 

In solving various problems related to a straight line, its equation in one form or another 

can be convenient, and we will make sure of this later. 
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